Monthly Problem 88

Let $f: \mathbb{R} \to \mathbb{R}$. Suppose that for all $x, y \in \mathbb{R}$, f(x+y) + f(x-y) = 2f(x) + 2f(y). Find $f(\frac{22}{7})$.

Solution

Let $x \in \mathbb{R}$. We show that $f(rx) = r^2 f(x)$ for all $r \in \mathbb{Q}$.

- 1. f(0+0) + f(0-0) = 2f(0) + 2f(0), so f(0) = 0. Thus, $f(0x) = 0^2 f(x)$ and $f(1x) = 1^2 f(x)$. Now, if $f(kx) = k^2 f(x)$ for $k \in \{n-1,n\}$, then $f((n+1)x) = 2f(nx) + 2f(x) - f((n-1)x) = (n+1)^2 f(x)$. By induction, $f(nx) = n^2 f(x)$ for all $n \in \mathbb{N}$. Hence, $f(x) = f(n\frac{x}{n}) = n^2 f(\frac{x}{n})$, so $f(\frac{x}{n}) = \frac{1}{n^2} f(x)$. It follows that $f(\frac{a}{h}) = (\frac{a}{h})^2 f(1)$ for all $a, b \in \mathbb{N}$.
- 2. f(0+u) + f(0-u) = 2f(0) + 2f(u), so f(-u) = f(u). Therefore $f(r) = r^2 f(1)$ for all $r \in \mathbb{Q}$.
- 3. If f(1) = 1, then $f(\frac{22}{7}) = (\frac{22}{7})^2$.

Comment

We claim that $f : \mathbb{R} \to \mathbb{R}$ satisfies f(x+y) + f(x-y) = 2f(x) + 2f(y) if and only if $f(x) = \varphi(x, x)$, where $\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is additive in each argument. Viewing φ as a generalized binary product, f can be viewed as a generalized square function. *Proof*:

1. Suppose f(x+y) + f(x-y) = 2f(x) + 2f(y). Define $\varphi(x,y) = \frac{1}{2}[f(x+y) - f(x) - f(y)]$. By the lemma below,

$$\begin{array}{lll} \varphi(x+y,z) &=& [f(x+y+z)-f(x+y)-f(z)]/2 \\ &=& [f(x+y)+f(x+z)+f(y+z)-f(x)-f(y)-f(z)-f(x+y)-f(z)]/2 \\ &=& [f(x+z)-f(x)-f(z)]/2 + [f(y+z)-f(y)-f(z)]/2 \\ &=& \varphi(x,z)+\varphi(y,z) \end{array}$$

Thus, φ is additive in the first argument. Since $\varphi(x, y) = \varphi(y, x)$, it is additive in the second argument. Finally, $\varphi(x, x) = \frac{1}{2}[f(2x) - 2f(x)] = \frac{1}{2}[2^2f(x) - 2f(x)] = f(x)$.

2. Suppose that $\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is additive in each argument, and that $f(x) = \varphi(x, x)$. Then

$$\begin{split} f(x+y) &= \varphi(x+y,x+y) = \varphi(x,x) + \varphi(x,y) + \varphi(y,x) + \varphi(y,y) \\ f(x-y) &= \varphi(x-y,x-y) = \varphi(x,x) - \varphi(x,y) - \varphi(y,x) + \varphi(y,y) \end{split}$$

Adding, we see that $f(x+y) + f(x-y) = 2\varphi(x,x) + 2\varphi(y,y) = 2f(x) + 2f(y)$.

The simplest bi-additive φ would be of the form $\varphi(x, y) = xy\varphi(1, 1)$, which would correspond to $f(x) = x^2f(1)$. However, we can construct much more complicated bi-additive φ as follows. By the maximum principle, there exists a basis \mathbb{B} for \mathbb{R} considered as a vector space over \mathbb{Q} . Define φ arbitrarily on $\mathbb{B} \times \mathbb{B}$. Now, any $x, y \in \mathbb{R}$ can be uniquely written $x = \sum_{i=1}^{m} \xi_i b_i$ and $y = \sum_{j=1}^{n} \gamma_j b_j$, where $\xi_i, \gamma_j \in \mathbb{Q}$ and $b_i, b_j \in \mathbb{B}$. Define $\varphi(x, y) = \sum_{i=1}^{m} \sum_{j=1}^{n} \xi_i \gamma_j \varphi(b_i, b_j)$. By construction, φ is additive in each argument. Since φ can be defined arbitrarily on $\mathbb{B} \times \mathbb{B}$, the corresponding f can be quite pathological.

Lemma. Suppose f(x+y)+f(x-y) = 2f(x)+2f(y). Then f(x+y+z) = f(x+y)+f(x+z)+f(y+z)-f(x)-f(y)-f(z). Proof. Adding the following equations,

$$\begin{array}{rcl} f(x+y+z)+f(x+y-z) &=& 2f(x+y)+2f(z)\\ f(x+y+z)+f(x-y+z) &=& 2f(x+z)+2f(y)\\ f(x+y+z)+f(y+z-x) &=& 2f(y+z)+2f(x)\\ f(x)+f(y-z) &=& [f(x+(y-z))+f(x-(y-z))]/2\\ f(z)+f(x-y) &=& [f(z+(x-y))+f(z-(x-y))]/2\\ f(y)+f(x-z) &=& [f(y+(x-z))+f(y-(x-z))]/2\\ 2f(y)+2f(z) &=& f(y+z)+f(y-z)\\ 2f(x)+2f(y) &=& f(x+y)+f(x-y)\\ 2f(x)+2f(z) &=& f(x+z)+f(x-z) \end{array}$$

we obtain 3f(x+y+z) + 3f(x) + 3f(y) + 3f(z) = 3f(x+y) + 3f(x+z) + 3f(y+z), and the lemma follows.