Quandaries and Queries
 

 

Use induction to show that

1 2 + 2 2 + .....+n 2 = (n 3)/3 + (n 2)/2 + n/6

Thanks Pooh

 

 

Hi,

Getting started: n=1

L.S. = 1 2 = 1

R.S. = (1 3)/3 + (1 2)/2 + 1/6 = 1/3 + 1/2 + 1/6 = 2/6 + 3/6 + 1/6 = 6/6 = 1

Keeping induction going: assume true for n=k and prove true for n=k+1 True for n=k means
1 2 + 2 2 + .....+k 2 = (k 3)/3 + (k 2)/2 + k/6

Now consider n=k+1

L.S. = 1 2 + 2 2 + ..... + k 2 + (k+1)^ 2

= (k 3)/3 + (k 2)/2 + k/6 + (k+1) 2

= 2k 3/6 + 3k 2/6 + k/6 + (6k 2 + 12k + 6)/6

= (2k 3 + 9k 2 + 13k + 6)/6


R.S. = [(k+1) 3)]/3 + [(k+1) 2]/2 + (k+1)/6

= (k 3 + 3k 2 + 3k + 1)/3 + (k 2 + 2k + 1)/2 + (k+1)/6

= (2k 3 + 6k 2 + 6k + 2)/6 + (3k 2 + 6k + 3)/6 + (k+1)/6

= (2k 3 + 9k 2 + 13k + 6)/6

Paul
 
 

Go to Math Central