Hi Zamira,
For the inductive step assume that the statement is true when n = k - 1, that is
15 + 25 + 35 + ... + (k-1)5 = (k-1)2 k2 (2(k-1)2 +2(k-1) - 1)/12
This simplifies to
15 + 25 + 35 + ... + (k-1)5 = (k-1)2 k2 (2k2 - 2k - 1)/12 (*)
The task now is to use equation * to show that
15 + 25 + 35 + ... + k5 = k2 [(k+1)2 (2k2 + 2k - 1)]/12 (**)
From equation *
15 + 25 + 35 + ... + (k-1)5 + k5
= (k-1)2 k2 (2k2 - 2k - 1)/12 + k5
= k2/12 [(k-1)2 (2k2 - 2k - 1) + 12k3] (***)
Expand the expressions inside the square brackets in equations ** and *** and cpm pare.
Penny
|