| 
           Hi Zamira, 
          For the inductive step  assume that the statement is true when n = k - 1, that is 
          
            15 + 25 + 35 + ... + (k-1)5 = (k-1)2   k2   (2(k-1)2 +2(k-1) - 1)/12  
             
          This simplifies to 
          
            15 + 25 + 35 + ... + (k-1)5 = (k-1)2   k2   (2k2 - 2k - 1)/12       (*) 
             
          The task now is to use equation * to show that 
          
            15 + 25 + 35 + ... + k5 = k2   [(k+1)2   (2k2 + 2k - 1)]/12       (**)  
             
          From equation * 
          
            15 + 25 + 35 + ... + (k-1)5 + k5  
              = (k-1)2   k2   (2k2 - 2k - 1)/12 + k5 
            = k2/12   [(k-1)2   (2k2 - 2k - 1) + 12k3]       (***)  
             
          Expand the expressions inside the square brackets in equations ** and *** and cpm pare. 
          Penny    
         |