|
||||||||||||
|
||||||||||||
| ||||||||||||
Hi Carla, I added four lines to your diagram to complete the regular pentagon ABCDE. Since ABCDE is a regular pentagon the measure of the angle ABC is π - 2π/5 = 3π/5 radians. Triangle ABC is isosceles and hence the measure of the angle BCA is (π - 3π/5)/2 = π/5 radians. The measure of the angle BCD is 3π/5 radians so the measure of the angle ACD is 3π/5 - π/5 = 2π/5 radians. Triangle CDA is also isosceles and hence the measure of angle DAC is π - 2 × 2π/5 = π/5 radians. Is this enough to get you started? Harley | ||||||||||||
|
||||||||||||
Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences. |