|
||||||||||||
|
||||||||||||
| ||||||||||||
Hi Abou, For the sake of the proof, let's say a≤b≤c. Then we know 2a≤2b≤2c 2a≤a+b and 2b≤b+c implies that a+c ≤ 2c implies that So we know that √[2a/(a+b)] ≤ 1, √[2b/(b+c)] ≤ 1 and √[2c/(a+c)] ≤ √2 Hope this helps, Janice | ||||||||||||
|
||||||||||||
Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences. |