|
||||||||||||
|
||||||||||||
| ||||||||||||
If a is proportional to b then a = kb for some constant k. (lets consider only a,b,k nonzero). Then a2-b2 = (kb)2 - b2 = (k2-1)b2 and ab = (kb)b=kb2. Thus (a2 - b2) / ab = (k2-1)b2/(kb2) = (k2-1)/k which is a constant, Thus if a is proportional to b then a2-b2 is proportional to ab (for b not equal to zero). Thx,
Hello Nazrul, Let m = (k2 - 1)/k then a2 - b2 = m ab. Thus a2 - b2 is proportional to ab. Tyler | ||||||||||||
|
||||||||||||
Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences. |