|
||||||||||||
|
||||||||||||
| ||||||||||||
Hi, To find this derivative you need to use both the product rule and the chain rule. I'm going to illustrate with a similar problem. Find $D_t \left[ \sin(t^2) cos(1-t) \right].$ You first need to see that this function is a procuct of a sine function and a cosine function so you need to use the product rule. \[D_t \left[ \sin(t^2) \cos(1-t) \right] = \sin(t^2) D_t \left[\cos(1 - t)\right] + D_t \left[ \sin(t^2) \right] \cos(1-t)\] To differentiate both $\cos(1 - t)$ and $\sin(t^2)$ you need to use the chain rule. \[D_t \left[\cos(1 - t)\right] = - \sin(1 - t) D_t[1 - t] = - \sin(1 - t) (-1) = \sin(1 - t)\] and \[D_t \left[ \sin(t^2) \right] = \cos(t^2) D_t[t^2] = \cos(t^2) (2t) = 2t \cos(t^2)\] Thus \[D_t \left[ \sin(t^2) \cos(1-t) \right] = \sin(t^2) \sin(1 - t) + 2t \cos(t^2) \cos(1-t)\] Now you try $D_t[\sin t \tan(t^2 + 1)].$ Harley | ||||||||||||
|
||||||||||||
Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences. |