|
||||||||||||
|
||||||||||||
| ||||||||||||
We have two responses for you Hi Carmen, She gave away $\frac12$ of her marbles and then $\frac13$ of her marbles so she gave away $\frac12 + \frac13$ of her marbles. What is $\frac12 + \frac13$? She has left $1 - \left( \frac12 + \frac13 \right)$ of he marbles which is 15 marbles. Can you complete the problem now? Penny
Carmen, This question is ambiguous - did Tom get 1/3 of the original number or, as the word "then" suggests, 1/3 of what was left? In the first case, you would model the problem by the following equation, where the numbers in parenthesis refer to proportions of the original bag:
("1" is the original bagful, "1/2" the proportion of the bagful given to Tina, and "1/3" the proportion of the bagful given to Tom.)
(The first parenthesized expression represents what proportion of her marbles she did not give to Tina, and the second represents what proportion of those she did not give to Tom.) Now, here's the funny thing. Both of these seem to have answers - but only one is possible in the real world, where marbles cannot be divided. So we know which answer must be right! Which one? (Hint: in each case, how many marbles would Ann have after the first gift?) Good Hunting! RD | ||||||||||||
|
||||||||||||
Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences. |