|
||||||||||||
|
||||||||||||
| ||||||||||||
Hi Steven, First lets try this problem with $k = 3.$ The function is $f(x) = \large \frac{1}{x} = x^{-1}$ so the point $P$ has coordinates $\left(3, \large \frac13\right).$ The derivative of $f(x)$ is $f^{\prime}(x) = (-1) x^{-2} = - \large \frac{1}{x^2}$ and hence the slope of the tangent to $f(x)$ at $x = 3$ is $f^{\prime}(3) = - \large \frac{1}{3^2} = - \frac19.$ Thus the tangent line $l$ to $f(x)$ at $x = 3$ has equation \[\left(y - \frac13\right) = - \frac19 (x - 3)\] Now you try it with $x = k.$ Penny | ||||||||||||
|
||||||||||||
Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences. |