|
||||||||||||
|
||||||||||||
| ||||||||||||
Hi, I assume have a diagram that looks something like this. If so then the triangles $ABC$ and $DBE$ are similar and thus \[\frac{|AB|}{|BC|} = \frac{|DB|}{|BE|}\] I hope this helps, | ||||||||||||
|
||||||||||||
Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences. |