SEARCH HOME
Math CentralQuandaries & Queries

search

Question from Lanelyn, a student:

Find the next 3 terms of the sequence 2,3,9,23,48,87,__,__,__

One way that sometimes works is the "method of finite differences."

Write the numbers out. Call this "row 0"
Beneath each pair write their difference. Call this "row 1". Use a minus sign if the second is smaller than the first.
Beneath each pair in row 1 write their differences - call this "row 2"

Repeat till you see a pattern that you can extend. Extend it and work back up, adding.

EXAMPLE: 1,3,7,13,21,31,43,_,_,_,

1       13   21   31   43
  2         10   12  
    2   2   2   2   2    

 

1       13   21   31   43
  2         10   12  
    2   2   2   2   2   2

 

12+2=14, 14+2=16, ...
43+14 = 57, (etc)

1    3     7    13   21   31   43   57   73   91
  2         10   12   14   16   18  
     2    2    2    2    2    2    2    2    


If you get all numbers the same in row d, your numbers are successive values P(0), P(1), P(2),... of a polynomial of degree d. There are ways of finding the coefficients of this polynomial.

Good Hunting!
RD

About Math Central
 

 


Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences.
Quandaries & Queries page Home page University of Regina PIMS