
Math Workshop  October 2010 
Fractions and Repeating Decimals 

 
 This evening we will investigate the patterns that arise when converting fractions 
to decimals.  As an example of what we will be looking at,  
 
1. Write 3/7 as a repeating decimal by dividing 7 into 3.0000... .  How many digits are in 

the repetend (i.e. in the repeating block of digits)?  Add the number formed by the 
first half of the repetend to the number formed by the second half. 

 
We start by reviewing sequences. 
Adding arithmetic and geometric sequences. 
 There are two types of sequences that appear so often that we give them names.  
To get any term after the first in an arithmetic sequence, you add a fixed constant to the 
previous term; for example, 

7, 10, 13, 16, 19, 22, 
where the difference between consecutive terms is d = 3.  For a geometric sequence you 
multiply the previous term by a fixed constant; for example, 

7, 21, 63, 189, 567. 
Here the ratio of consecutive terms (one term divided by the previous term) is r = 3. 
 There are simple tricks for adding the terms of these sequences.  To easily 
compute the arithmetic sum S = 7 + 10 + 13 + 16 + 19 + 22, write the sum forwards and 
backwards, then add vertically: 
 S =   7 + 10 + 13 + 16 + 19 + 22 
 S = 22 + 19 + 16 + 13 + 10 +   7 
  2S = 29 + 29 + 29 + 29 + 29 + 29  = 6 · 29; 
Since 2S = 6·29, we deduce that S = 3·29 = 87, which can easily be verified by adding the 
given six numbers. 
 And here is the trick for geometric sums.  To compute a geometric sum such as   
S = 7 + 21 + 63 + 189 + 567, subtract S from 3S (where the number we multiply S by is 
the common ratio of any two consecutive terms, 3 = 21/7 = 63/21 = 189/63 = ...): 
 3S =           21 + 63 + 189 + 567 + 1701 
 – S = – (7 + 21 + 63 + 189 + 567) 
   2S = – 7    +   1701; 
thus, 2S = 1694, whence S = 847, which again is easily checked directly.  Here are four 
practice problems.  Although there are formulas that give you the sum from the initial and 
final elements and the size of the jump, understanding the trick is much more important 
than mastering the formulas. 
 
2.  Compute the following four sums. 
 a.  Sum the odd numbers between 10 and 1000. 
 b.  Sum the powers of 4 from 4 to 1024. 

 c.  

! 

7

10
+
7

100
+

7

1000
+

7

10000
+

7

100000
. (Suggestion. Use 10S instead of S/10.) 

 d. 

! 

7

10
+
7

100
+

7

1000
+

7

10000
+

7

100000
 + … (where the three dots mean that you 

should continue the sum to infinity). 
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Fractions and repeating decimals. 
 Parts (c) and (d) of Exercise 2 suggest how geometric sums might be related to 
rational numbers, which is the main topic of today's workshop.  We define a rational 
number to be any real number that can be written as a fraction; a fraction is any number 

that can be written in the form 

! 

a

b
, where a and b are integers and b ≠ 0.  Here are some 

examples: 
2/5;  5/2;  .8 = 8/10;  41/3 = 13/3;  –18 = –18/1;  – 4/3 = –4/3 = 4/–3;  0 =  0/1; 11.37 = 1137/100 . 

Every integer is a rational number since the integer n can be written as n/1.  It is obvious 
that 

! 

81  is rational because it equals 9 = 9/1.  On the other hand, it is entirely unobvious 
that 

! 

2  is not rational: 

! 

2  cannot be written as a fraction, a discovery that came as quite 
a surprise to the ancient Greeks.  The proof of the irrationality of 

! 

2  is not hard, but we 
will leave it for another time.  Tonight we are interested in exploring another unobvious 
fact: the rationals are precisely those numbers that can be written as repeating decimals.  
A repeating decimal is a number written in decimal notation whose digits to the right of 
the decimal point eventually consist of endless repetitions of a block of numbers called 
the repetend. The number of digits in the smallest repeating block is called the period of 
the repeating decimal.  For example, 1/3 = .3333 ... has period 1, and 2779/110 = 
25.2636363... has period 2.  We use a bar over the repeating part of the decimal as 
shorthand; thus  

1/3 is written as 0.3 (or just 

! 

.3), while 2779/110 becomes 25.263 . 
¼ = .250000000 … is also a repeating decimal, which we usually write as .25 (or 0.25).  
(Numbers where the repeating part is a zero are called "terminating decimals" by 
schoolteachers, but we have no need here for more terminology.) 
 We can write any fraction as a repeating decimal by using long division.  An 
example will make this clear.  Let's write 345/22 as a decimal: 

! 

22 345.000

15.681

)  
 22 
 125 
 110 
  150 
  132 
  180 
  176 
  40 
  22 
  18 
We stopped when 18 repeated as the remainder — we would just bring down the zero 
again, find that 22 goes into 180 eight times with a remainder of 4, bring down the zero 
and get 22 goes into 40 one time with a remainder of 18, and continue getting remainders 
of 18 and 4 forever.  We conclude that  

! 

345

22
=15.6818181… =15.681. 

We knew that eventually the remainders would start to repeat because there are only 22 
possible remainders when dividing by 22, namely the integers from 0 up to 21.  It just 
happens that the period is 2 and not something longer.  In fact it is easy to see that a/b 
will have period 2 if b = 2m ·5n ·11 and a is any integer that is not divisible by 11; 
furthermore, the sum of the digits of the repeating part will be 9.   
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3. Verify this for yourself — without a calculator — by showing that x = 7/440 has 

period 2, but save yourself time and effort by first multiplying x by 103 (because 440 
= 23 ·5·11, so 3 is the highest power to which 2 or 5 has been raised), then divide top 
and bottom of 103x by 40 to reduce the fraction to an integer over 11, do the division, 
then solve for x. 

 In the other direction we recognize that 15.6818181… is just 15.6 plus a 
geometric sequence!  15.6 + .0818181… = 15.6 + .081 + .00081 + .0000081 + …, where 
each term is 1/100 times the previous term:   
 
4. Subtract x = 15.68181... from 100x, then solve for x.  Reduce x to a fraction in lowest 

terms.  (Remember that a fraction is the quotient of integers; you might have to 
multiply top and bottom by a power of 10 to get it in the proper form.) 

 For a fraction a/b in lowest terms, the longest its period could possibly be is b – 1 
(because there are b – 1 nonzero possible remainders).  To simplify matters, we will 
restrict ourselves to the case where b is a prime number, and a < b.  When the period of 
1/b is b – 1, we will call b a full-period prime.  The smallest full-period prime is 7. 
5. a. Write 1/7 as a repeating decimal. 
 b. Use part (a) to guess what the decimal expansion of 2/7 must be — in particular, 

you should note where the remainder of 2 shows up in your division of 7 into 1. 
 Observe the evident patterns in Figure 1.  Each fraction a/7 (in the box on the left) 
has the same cycle of digits in its decimal expansion, but with different starting points.  
Thus, to compute a/7, don't think of multiplying the decimal for 1/7 by a; rather, apply a 
cyclic permutation to the digits in the repeating block 142857.  In this context it is natural 
to arrange the digits around a circle as shown in the figure.  An arrow in the middle 
reminds us which way to order the digits, and each fraction a/7 is placed outside the 
circle beside the starting point for its decimal.  Thus, looking at the circle diagram, we 
can read off the decimal expansion of 3/7 as follows.  The first digit, 4, is inside the circle 
next to the label 3/7.  Starting at that point, proceed around the circle reading off digits 
4285714285714285… . 

 
 Did you notice that the diametrically opposed digits inside the circle add to 9?  Or 
that the diametrically opposed fractions outside the circle add to 1?  Are these just 
coincidences, or do these patterns show up for denominators other than 7?  It turns out 
that these questions are easily answered for full-period primes, so we will focus on them.  
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It is not at all clear which primes have a full period.  On the last page we include a list of 
the values of 1/b for integers b ≤ 50.  The full-period primes on that list are 7, 17, 19, 23, 
29, and 47.  (There are many larger full-period primes — 59, 61, 97, 109, …— but 
nobody knows whether or not the list is infinite!)  Here is one simple method for 
determining the period corresponding to a prime number: 
Theorem 1. For any prime number p larger than 5, the number of ones in the first 
element of the sequence 11, 111, 1111, … that is divisible by p equals the period of 1/p. 
6. Test the theorem for the primes 7, 11, and 13 (with periods 6, 2, and 6, respectively). 

You can easily prove it by applying the method used in problem 4 above to convert 
1/p to its decimal form: If k is the period, then (10k  – 1)/p will be an integer, call it n; 
that is, 9·111…1/p = n.  Since p is a prime larger than 5, it cannot divide evenly into 
9, so it must divide the factor 111…1, as claimed.  Go through this proof using 7 and 
11 to better understand the argument—what does n equal when p = 7? p = 11?  

 Consider the circle diagram for b = 17. 

 
7. Your calculator won't help much in this exercise because the period of 1/17 is 16, but 

the figure has all the information you need.  You should check (by long division) that 
the decimal expansion of 1/17 begins .05882...; that the first remainder after the 
decimal point is 10 (that is 17 goes into 1.0 zero times with a remainder of 10); that 
17 goes into 100 five times with a remainder of 15 (Look where the 5 and 15 appear 
on the circle in Figure 2.); that 17 goes into 150 eight times with remainder 14.  
Furthermore, check that 15/17 begins .88235... .  It should be clear to you that the 
decimal expansion of 15/17 would contain the same digits in the same order as 1/17, 
but it begins where the long division of 17 into 1 has a remainder of 15 (so that the 
first step is to divide 17 into 150). 

 
 It should be clear from these examples that when b is a full-period prime, the b – 1 
distinct fractions a/b with 1 ≤ a ≤ b – 1 have repetends that are cyclic permutations of a 
common sequence of digits d1, d2, d3,…, db–1. 
8. Explain why b must be prime when 1/b has period b – 1.  (Hint. If, to the contrary, b 

= pq had period b – 1, what would you know about the period of p/b = 1/q?) 
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Theorem 2.  Let p be a full-period prime.  If the repetend of 1/p is the sequence of digits 

d1, d2, d3,…, d2k, then d1 + dk+1 =  d2 + dk+2 = …  dk + d2k = 9. 
9. We expect older students who are good at algebra to provide a justification for each 

claim of my argument below.  Younger students should just verify each claim using 
both  p = 7 (with period 6) and p = 19 (with period 18). 

 a. If p is a full period prime, then its repetend has length p – 1. 
 b. We can denote the period by 2k (where k is a positive integer). 
 c. p divides (102k – 1)/9 = 

  

! 

111…1
2k

1 2 3 , but fails to divide any shorter string of 1s.  In 

particular, p does not divide 
  

! 

111…1
k

1 2 3 . 

 d. 
  

! 

111…1
2k

1 2 3  = 
  

! 

10
k +1( ) 10k "1( )

9
= 10

k +1( ) #111…1
k

1 2 3 , so that p divides 10k + 1, whence 

10k/p + 1/p is an integer.   
 e. The decimal expansion of the sum 10k/p + 1/p may be represented this way: 

+

! 

d
1
d

2
…d

k
.d

k+1
d
k+2

…d
2k
d

1
 d

2
…

.d
1
  d

2
   …d

k
d
k+1
d
k+2

…
 

 f. Therefore,  di + dk+i = 9 for each i between 1 and k. 

 You may have noticed that in the proof of Theorem 2 we made little use of the 
condition that p be a full period prime.  In fact, we used only the fact that the period is 
even.  An 1836 theorem of the French mathematician E. Midy states that the property of 
1/p in Theorem 2 holds for the fraction a/p, where p is an arbitrary prime larger than 5 
and a an integer that is not a multiple of p, as long as the period of p is even.  Observe in 
the table on the last page that the prime numbers from 31 to 43 all have odd periods so 
that Midy's theorem does not apply to them.  It does apply to the other primes on the list.  
When p is not a full period prime, the period of 1/p is a divisor of p – 1, and for each a 
that is not a multiple of p, a/p has the same period as 1/p.   
10. Check these claims out for a/11, where a < 11.  Note that there will be five circle 

diagrams modeled after Figures 1 and 2, each with only one pair of opposite fractions. 
11. Draw the circle diagrams for a/13, a < 13.  Here the circle diagrams come with six 

fractions each; one circle can start with 1/13, the other with 2/13. 
Mod 10 arithmetic. 
 Consider the long-division method you used with Exercise 11.  At each step we 
bring down a zero, divide by 13, and subtract to obtain the new remainder.  But "bring 
down a zero" really means multiply by 10.  That is, if r is the remainder at a particular 
step in the division, the next remainder will be 10r (mod 13).  So when expanding 1/13, 
starting with the first remainder, 10, the sequence of remainders is 10 (mod 13), 102 ≡  9 
(mod 13), 102 ≡  9 (mod 13), 103 ≡ 12 (mod 13), 104 ≡ 3 (mod 13), 105 ≡  4 (mod 13).  
(Please note how these numbers correspond to the fractions 10/13, 9/13, 12/13, 3/13, and 
4/13 about the first circle you made in Exercise 11.)  The sequence repeats when we 
reach a power of 10 that returns to the starting point: 106 ≡ 1 (mod 13); that is, 13 divides 
evenly into 106 – 1.  Since 106 – 1 = (103 + 1)(103 – 1), and 13 does not divide 103 – 1 
(because if it did, we would have found the period of 1/13 to be shorter than 6), we 
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deduce that 13 must divide 103 + 1.  (Of course, it's easy to check that 1001 = 7·11·13.)  
This approach gives us a second way to recognize full-period primes: 
Theorem 3. 1/p has period p – 1 if and only if every positive integer less than p is 
congruent to 10j (mod p) for some j < p. 
 
 

Table of the decimal expansions of 1/x for x ≤ 50. 

 


