|
|||||||||||||||
|
|||||||||||||||
| |||||||||||||||
Hi Ameen, Since the domains of $\sin(x)$ and $\cos(x)$ are the entire real line the only possible real number $x$ not in the domain of \[f(x) = \frac{\cos(2x)}{\sin(x) - 2}\] is an $x$ that makes $\sin(x) - 2 = 0.$ For what value of $x$ is $\sin(x) - 2 = 0?$ Penny | |||||||||||||||
|
|||||||||||||||
Math Central is supported by the University of Regina and the Imperial Oil Foundation. |