Two Parabolas

Kind

November 14, 2015

The short answer: Yes, it is always possible to find the common tangents of two parabolas the number of common tangents is always either 1 or 3 . But even using a computer algebra system, the result would be so intimidating that it would be of no value. A more reasonable approach would be to start with one of the parabolas in standard position. When working with tangents, it is usually easier to use line coordinates [$\mathrm{u}, \mathrm{v}, \mathrm{w}$], which stand for the line

$$
u x+v y+w=0, \quad \text { or } \quad y=-\frac{u}{v} x-\frac{w}{v} .
$$

The equation of a parabola using line coordinates is then

$$
u^{2}+2 a u v+b v^{2}+2 c u+2 v d=0
$$

which is satisfied by the "line at infinity" $u=v=0$. (Explanation: The equation represents what is called the dual of the parabola: a line $[u, v, w]$ is tangent to the curve if and only if its coordinates satisfy the line equation. A parabola is defined to be a conic that is tangent to the line at infinity, which means that $[0,0,1]$ satisfies its line equation. You can pass between the equation of a conic and its dual using the corresponding matrix and its inverse, as explained in projective geometry textbooks.) To find the tangents common to the general parabola and the convenient parabola,

$$
v=u^{2},
$$

just plug u^{2} in for v in the equation for the general parabola to get $u^{2}+2 a u^{3}+b u^{4}+2 c u+2 d u^{2}=0$ which, after dividing through by u, is the cubic equation

$$
b u^{3}+2 a u^{2}+(2 d+1) u+2 c=0 .
$$

(To find the resulting tangent lines, one must solve the cubic, which is guaranteed one real solution. If s is a solution, then the corresponding common tangent will be $\left[s, s^{2}, 1\right]$.)

On the other hand, it sounds from your question that what you really want is a pair of parabolas described in terms of focus and directrix. So given foci A and B and corresponding directrices a and b, one gets any common tangent as a line in which the reflection simultaneously takes A to a point A^{\prime} on a, and B to a point B^{\prime} on b. In terms of paper folding, the Beloch Fold is a single fold that places A on a and B on b. A recent paper by Thomas C. Hull ("Solving Cubics with Creases: The Work of Beloch and Lill"; American Mathematical Monthly, 118:4, April 2011, 307-315) describes how to make the fold with an actual piece of paper. For the algebraic version of constructing $\sqrt[3]{r}$,

Figure 1: Folding along the purple line places $A:(-1,0)$ on $x=1$ and $B:(0,-r)$ on $y=r$.
start with focus $A=(-1,0)$, directrix $x=1$, and focus $B=(0,-r)$, directrix $y=r$. (We won't need them, but the corresponding conics are $y^{2}=-4 x$ and $-4 r y=x^{2}$.) To find the equation of the fold line, start with an arbitrary point $(1,2 a)$ on $x=1$. The fold line $y=-\frac{1}{a} x+a$ is the perpendicular bisector of the segment joining $(-1,0)$ with $(1,2 a)$. The goal is to find the value of the variable a so that the fold line is also the perpendicular bisector of the segment joining $(0,-r)$ to a point of the target line $y=r$. This joining line has the equation $y=a x-r$ (namely, the line through $(0,-r)$ that is perpendicular to the fold line); it must intersect the fold line on the line $y=0$, halfway between $y=-r$ and $y=r$. In terms of the variable x these intersecting lines are

$$
x=-a y+a^{2} \quad \text { and } \quad x=\frac{y}{a}+\frac{r}{a},
$$

whose x values must be equal at the intersection point:

$$
-a y+a^{2}=\frac{y}{a}+\frac{r}{a},
$$

which reduces to

$$
y=\frac{a^{3}-r}{a^{2}+1} .
$$

This variable y can be zero if and only if $a^{3}=r$; in other words, the constructed point $(0, a)$ produces the cube root of the arbitrary real number r.

If you start with the point $A=(0,2 r)$ and its target point $(2 a, 0)$ on the line $y=0$, together with $B=(0, s)$ and its target line $x=-2 b$ (where $b \neq 0$), the folding line will be $y=\frac{a}{r} x+\left(r-\frac{a^{2}}{r}\right)$ with a any zero of $x^{3}+b x^{2}+\left(r s-r^{2}\right) x+b r^{2}=0$. Thus, as long as $b \neq 0$, to construct the zeros of the cubic equation

$$
x^{3}+b x^{2}+c x+d=0,
$$

simply set $r=\sqrt{\frac{d}{b}}$ and $s=\sqrt{\frac{d}{b}}\left(c+\frac{d}{b}\right)$.

