|
||||||||||||
|
||||||||||||
| ||||||||||||
Hi, I think you are to find the value of $b.$ I would rather work with exponential expressions than with logarithms so I am going to use \[\log_3(a-6) = 2b \mbox{ is equivalent to } 3^{2b} = a-6\] and \[\log_2(a-7) = 3b \mbox{ is equivalent to } 2^{3b} = a-7\] Hence you have \[9^b = a-6 \mbox{ and } 8^b = a-7\] Can you complete it now?
|
||||||||||||
|
||||||||||||
Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences. |