|
|||||||||||||||||||||
|
|||||||||||||||||||||
| |||||||||||||||||||||
Hi, Below is my sketch the situation you described. My sketch is not to scale. $AB$ is the radius of the base circle so $|AB| = 1124$ units. The height $|AE| = |BD| = 200$ units and the radius $|EC|$ of the top circle is unknown. I'm going to call it $R$ units. The measure of the angle $BCD$ is 15 degrees.
The length of $ED$ is 1124 units so the length of $DC$ is $R - 1124$ units. The triangle $BCD$ is a right triangle and hence \[ \tan(15^o) = \frac{|BD|}{|DC|} = \frac{200}{R-1124}.\] Thus \[R - 1124 = \frac{200}{\tan(15^o} = \frac{200}{0.2679} = 746.4.\] Hence \[R = 1124 + 746.4 = 1870.4 \mbox{ units.}\] Penny |
|||||||||||||||||||||
|
|||||||||||||||||||||
Math Central is supported by the University of Regina and the Imperial Oil Foundation. |