|
||||||||||||
|
||||||||||||
| ||||||||||||
Hi Will, A negative power has a special meaning. If $n$ and $k$ are both numbers then \[k^{-n} = \left( \frac{1}{k}\right)^{n}.\] For example \[6^{-2} = \left(\frac{1}{6}\right)^2 = \frac{1^2}{6^2} = \frac{1}{36}.\] In your example \[\left(\frac{-2}{3}\right)^{-6} = \left(\frac{1}{\frac{-2}{3}}\right)^{6}.\] Can you simplify this expression? Write back if you need more assistance, |
||||||||||||
|
||||||||||||
Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences. |