3 items are filed under this topic.








0.99999.... 
20080923 

From Eve: Hi, i had a problem with change 0.99999... this recurring decimal to a fraction. I know the method, but the answer I got is 1 as you can see below.
Where have i done wrong? Answered by Harley Weston. 





0.99999... 
20020926 

From Erica: Yesterday in my 8th grade math class we were being taught how to convert a Repeating Decimal into a fraction. Since I, for some odd reason, seem to understand math better than the rest of my classmates, i began to drown out my teachers explaination for the rule. While she was about half way through with explaining mixed decimals i came up with an unsolvable question. Like I said before, I understand how to turn a repeating decimal into a fraction, but how would I turn a repeating .9 into a fraction? We all know it would equal 9/9, but doesn't 9 over 9 also equal 1? Even though it comes very close to one, it never really equals one. I'm very confused about this and i would love it if you could clear this up for me. Answered by Penny Nom. 





Repeating decimals 
19990521 

From Stan: Hi, I am in Honors Math, and have confronted everyone, including teachers, about repeating decimals. What interests me is the number 0.9... and 1. Everyone says that since there is no number between 0.9...(repeating) and 1, that 0.9... = 1. However, isn't a repeating number a representation of a number, and not a real number? Let's look at it this way. 0.9 is close to 1. 0.99 is closer. 0.99999999999999 is even closer. so, 0.9... is a representation of it's closeness to 1. it's an active number... I don't understand how 0.9... is equal to 1. Please help me prove that 0.9... does NOT = 1. Answered by Penny Nom. 


