Base Ten Blocks

Objective: Demonstrate and describe the process of multiplication (3-digit by 1-digit), using manipulatives, diagrams and symbols.
Materials: Base ten blocks, paper, pencil, 5×8 cards.

- Use base ten blocks to construct a model of multiplication equations:
- To show 132×5 we would do the following:
- take five of the 5 " $\times 8$ " cards and spread them on the table top.
- on top of each of these cards place one flat block (100), 3 long blocks (30), and 2 single blocks (2) to create $132(100+30+2)$.
- on a piece of paper write the equation 132×5, and begin the multiplication process.
- remove the singles from each card (5×2), and trade up if possible (to 1 long).
- remove the long blocks from each card (5×3), and trade up if possible (1 flat).
- remove the flat blocks from each card, and trade up if possible. Read the product.
- Try these: $143 \times 2122 \times 3 \quad 248 \times 2 \quad 159 \times 6$

Objective: Estimate, mentally calculate, compute or verify, the product (3-digit by 2-digit) and quotient (3-digit divided by 1-digit) of whole numbers.
Materials: Base ten blocks, paper, pencil.

- Use the base ten blocks to model a 2-digit by

2-digit multiplication equation.

- To show 25×13, we would create a model like the one shown.
- When we multiply 25 by 13 , we essentially repeat the multiplication process four times: $3 \times 5,3 \times 20,10 \times 5$, and 10×20. Can you find the products of each of these portions of the multiplication in the model given?
- Some for you to try: 23×14
18×12
$24 \times 35 \quad 16 \times 14$

Objective: Recognize, model, identify, find and describe common multiples, common factors, least common multiple, greatest common factor and prime factorization, using numbers 1 to 100.
Materials: base ten blocks, cm ruler or metre stick.

- assume you are trying to find the LCM of 4 and 6 . Start by creating several "trains" of blocks 4 singles long and several which are 6 singles in length.
- place these trains along the edge of the cm ruler starting at 0 . Every place where one of the trains ends represents a multiple of that number. You will find that the multiples of 4 are $4,8,12,16,20, \ldots$ and the multiples of 6 are $6,12,18,24,30 \ldots$ Wherever the trains end at the same spot represents a "common" multiple. The first such instance is the "least" common multiple. A diagram is shown below. The least common multiple of 4 and 6 is 12 . - How could you model the "greatest common factor"?
place these trains along the edge of a ruler

