1

PENTOMINOS Geometry

Purpose: To place all pieces on the grid Skill: Spatial awareness Players: 2 (or play alone) Direction: Players alternately place a chosen per

Players alternately place a chosen pentomino on the grid (one dimension only). Play continues until one player is unable to make a move.

Alternate Ideas:

a) place pieces on the board to build desired shapes

b) design three dimensional shapes with pentomino pieces

Can you build the figures shown on the following pages?

HINTS:

a) The first figure is actual size - place pieces directly on the page.

b) To build the figures on the pages with grids, use the shapes as indicated on the top of each section.

Pentominos Game Board

One possible solution:

Try making the following figures using the shapes shown at the top of the page:

2

NEWT TESSELATIONS

Geometry

Purpose: To make a tesselating pattern Skill: Understand the concept of tesselations, and the fact that area remains constant. Directions:

 Trace hexagon pattern and draw in shaded sections.

2. Carefully letter (a - f) and cut out shaded sections.

3. Tape cut- out sections to matching letter sections. Do not flip! Keep letters face up. Use tiny pieces of tape to join.

4. Trace your pattern in the middle of a sheet of paper.

- 5. Rotate the pattern so that it fits into the side of the newt already traced, like a puzzle piece. Trace again.
- 6. Continue rotating and tracing until sheet is filled, even those whose edges extend off the paper.
- 7. Decorate with eyes, stripes, etc.

TWO HALVES MAKE A WHOLE Geometry

Purpose: To rearrange the two cut shapes to fit into every pattern on this page.

Skill: Spatial awareness Directions:

Suggestion: Use a timer or a clock to see how long it takes you. Challenge a friend to beat or match your time.

MAKING BOXES Geometry

Purpose: To make as many patterns as possible for boxes (with tops)

Skill: Three dimensional visualization Spatial awareness

Directions:

1. Imagine you are a box manufacturer and you want to ship boxes flattened out. How many possible shapes of 6 squares could be folded into a box?

2. Using the square pattern and graph paper, make as many designs as possible. (Trace 6 adjoining squares in a pattern you decide upon.)

3. Cut out your pattern and fold to see if you can make a box of each in order to check your work.

4

MAKING A QUILT BLOCK

Geometry

Purpose: Arrange triangles in a geometric design to create a "quilt block"

Skill: Recognize and design patterns that can be made with congruent triangles

Directions:

5

- 1. Choose 16 squares of contrasting colors. (8 each of
- 2 colors)
- 2. Cut each square diagonally to form 2 triangles
- 3. Arrange in an interesting pattern
- 4. When you have decided on a pattern, glue triangles on a piece of paper.

Sample:

FIGURES ON A GEOBOARD Geometry

Purpose: Make shapes on a geoboard based on knowledge of angles, triangle, and rectangles

Skill: Knowledge of polygons such as parallelograms, rectangles, and triangles.

Knowledge of angles.

Number of people: Possible to work alone, but working with a partner will help verify results and also will show that there is usually more than one correct answer.

- Directions: 1. Use geoboards in the classroom OR geoboard sheets provided OR graph paper, using the intersections of lines as the "posts" on the geoboard.
 - 2. Try making the following:
 - a) triangle with a right angle
 - b) triangle with no right angle
 - c) a house containing right, acute, and obtuse angles.
 - d) a sailboat with no right angles
 - e) a Christmas tree using at least three triangles
 - f) a rocket ship made of rectangles and squares
 - g) a five sided figure
 - h) a parallelogram that is not a rhombus, square, or rectangle.

3. If playing with a partner, make a shape and have your partner copy it. Describe it in geometric terms.