.
.
Math Central - mathcentral.uregina.ca
Quandaries & Queries
Q & Q
. .
topic card  

Topic:

counter-intuitive

list of
topics
. .
start over

One item is filed under this topic.
 
Page
1/1
The birthday problem 1999-04-19
From Gordon Cooke:
How do I explain the rapid rise in the probability that at least two people in a group of n have the same birthday. We have derived the formula for p(n) and have graphed it and have seen how the results are counter-intuitive. At around n=23 p(n)=.5 and at n=50 p(n) is very close to 1. It does not help to simplify the problem (eg use months instead of days) because then our intuition does correspond more closely to reality. Is there some way we can see how the probabiltiy of a "collision" increases with n? It makes me think of data storage problems and hash tables in computer science.
Answered by Harley Weston.
 
Page
1/1

 

 


Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences.

CMS
.

 

Home Resource Room Home Resource Room Quandaries and Queries Mathematics with a Human Face About Math Central Problem of the Month Math Beyond School Outreach Activities Teacher's Bulletin Board Canadian Mathematical Society University of Regina PIMS