Divisibility of $2 n$ choose n by a prime.

Penelope Nom

A recent question and answer sent to Quandaries and Queries was
"Are there infinitely many n such that 105 "divides" 2 n choose n ?
Your question is an unsolved problem.
Erdos, Graham, Rusza and Straus (Math. of Comp., 29(1975),pp 83-92) show that for any two primes p and q there exist infinitely many integers n for which $(\mathrm{C}(2 \mathrm{n}, \mathrm{n}), \mathrm{pq})=1$. They remark that nothing is known for three primes and, in particular, they ask whether there are infinitely many n for which $(\mathrm{C}(2 \mathrm{n}, \mathrm{n}), 105)=1$ and this is your problem. As far as I know this is still unsettled.

If we want to look at prime factors of n ! there is a nice way to find the power to which a prime p occurs dating back to Legendre. Legendre observed that if $\alpha_{p}(n)$ is the power to which p divides n ! then $\alpha_{p}(n)=\left[\frac{n}{p^{1}}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\ldots$ where the square brackets [] denote the greatest integer function. For example, the largest power of 3 in 204 ! is
$\alpha_{3}(204)=\left[\frac{204}{3^{1}}\right]+\left[\frac{204}{3^{2}}\right]+\left[\frac{204}{3^{3}}\right]+\left[\frac{204}{3^{4}}\right]+\ldots=68+22+7+2=99$.
This is because 3 divides every 3 rd number in the sequence $1,2,3, \ldots, 204 ; 3^{2}$ divides every 9 th number in the sequence $1,2,3, \ldots, 204$; and 3^{3} divides every 27 th number in the sequence $1,2,3, \ldots, 204$; and 3^{4} divides every 81 st number in the sequence $1,2,3, \ldots, 204$.

Similarly if you wanted to find out how many zeroes appear at the end of 204! what you really need to find out is how often 5 divides 204! That's
$\alpha_{s}(204)=\left[\frac{204}{5^{1}}\right]+\left[\frac{204}{5^{2}}\right]+\left[\frac{204}{5^{3}}\right]+\ldots=40+8+1=49$.
Note that if we write 204 in base 3 (see Converting to other bases in Quandaries \& Queries), i.e. $204=$ 21120_{g} the sum of the digits in base 3 is 6 . If we write 204 in base 5 we get $204=134_{s}$ the sum of the digits is 8 . Observe that $(204-6) /(3-1)=99$. Observe also that
$(204-8) /(5-1)=49$. Is this an accident, getting 99 and 49 again this way? It isn't. The proof is a little messy but not too hard, however we won't go through it here. Let's have a peek at what goes on though.

Let me write $\operatorname{Sp}(\mathrm{n})$ for the sum of the digits of n in base p . We can in general show that the power to which p divides n ! can be expressed as $\alpha_{p}(n)=\frac{n-S_{p}(n)}{p-1}$. The interested reader might then want to see how often a prime p divides $\binom{2 n}{n}$, as was asked in the Quandaries and Queries question, call it $\beta_{p}(n)$; we find, looking at the factorials in the numerator and denominator of $\binom{2 n}{n}$ that
$\beta_{p}(n)=\alpha_{p}(2 n)-2 \alpha_{p}(n)=\frac{2 n-S_{p}(2 n)}{p^{-1}}-2 \frac{n-S_{p}(n)}{p^{-1}}=\frac{2 S_{p}(n)-S_{p}(2 n)}{p^{-1}}$.
For example, $204=21120$, and $102=10210_{3}$. Thus $\beta_{s}(204)=\frac{2(4)-6}{3-1}=1$. Similarly $204=134_{s}, 102=$ 42_{s} thus $\beta_{s}(204)=\frac{2(6)-8}{5-1}=1$. That is both 3 and 5 divide 204 choose 102 to the first power only .

Obtained from Math Central

http://MathCentral.uregina.ca/

