







The cardinality of the prime numbers 
20091107 

From Justin: Hello there, I was just wondering since the number of primes is infinite,
are they equal to infinity or Alephnull?
Justin Answered by Robert Dawson and Victoria West. 





Cardinality of infinite sets 
20090901 

From Brian: I was reading an answer to a question on your site regarding infinite sets (http://mathcentral.uregina.ca/QQ/database/QQ.09.01/carlos1.html), and I think they may have got the answer wrong.
I his example, he claims that the set of real numbers BETWEEN 0 AND 1 is larger than the set of positive integers.
Please correct me if I am wrong, but I believe those two sets are  pardon the expression  equally infinite. For any integer, there is a corresponding real number between 0 and 1, and vice versa.
For instance, using the decimal as a "mirror", you can create a mirror image of any real number between 0 and 1 as an integer (i.e. 0.1234 gets mirrored as the integer 4321  I could write it out algebraically, if you want, but you get my point)
Am I wrong?
Thanks,
Brian Answered by Victoria West. 





InfiniteDimensional Spaces 
20090626 

From Justin: Hello again, I was also just wondering (in Hilbert Space and Function Space) are there infinitedimensional spaces larger than each other in terms of cardinality? Thanks a lot for your help again!
All the Best,
Justin Answered by Victoria West. 





Cantor's cardinality 
20090216 

From Justin: Hello, I was just wondering why the infinity from real numbers is smaller than Beth Two in the context of Cantor's cardinality set theory?
Justin Answered by Robert Dawson. 





What is larger than infinity? 
20030112 

From Dana: What is larger than infinity? Answered by Claude Tardif and Harley Weston. 





Equivalence relations on a set of cardinality n 
20020706 

From Siddhartha: what is the no. of equivalence and transitive relations on a set of cardinality n? Answered by Penny Nom. 





Can a infinite set be smaller than another infinite set? 
20011129 

From Carlos: Can a infinite set be smaller than another infinite set? If so why? Answered by Chris Fisher and Penny Nom. 





Cardinality of sets 
20011119 

From Tania:
 Show that the cardinality of P(X) (the power set of X) is equal to the cardinality of the set of all functions from X into {0,1}.
 Show that (the cardinality of the natural numbers set) N = NxNxN.
 Show that the cardinality of the set of prime numbers is the same as the cardinality of N+
Answered by Walter Whiteley. 





Subsets of the natural numbers 
20010130 

From Christina: How do I explain why the set of natural numbers (N) cannot be equivalent to one of its finite subsets? Answered by Penny Nom. 





Infinite sets 
20000412 

From Brian Provost: Here's the deal: There are an infinite amount of integers (1,2,3...). Agreed? There are an infinite amount of even integers, too (2,4,6...). Agreed? By convention, infinity equals infinity. Yet common sense tells us there are obviously more integers than there are even integers. Prove this to be true mathematically. Answered by Harley Weston. 

