Math Central - mathcentral.uregina.ca
Quandaries & Queries
Q & Q
. .
topic card  



list of
. .
start over

3 items are filed under this topic.
How can other infinites can be larger than each other? 2009-02-17
From Justin:
Hello again, I was just wondering even in the context of set theory, how can other infinites can be larger than each other, I thought infinity itself is the largest possible quantity?


Answered by Victoria West and Robert Dawson.
0.999..., asymptotes and infinity 2004-12-17
From Mike:
My Name is Mike and I teach high school. I had a student ask me to explain why .9 repeating is equal to 1. Then he asked me about an asymptote, or why a parabola or any other curve for that matter can continually approach a value (like 1) and yet never attain a value of 1. He is thinking that these two should represent the same concept and yet they contradict each other. Do you have a solid explanation for him? Of by the way he is a 7th grader. Great little thinker!!!!!
Answered by Claude Tardif and Harley Weston.
Different infinities 2004-05-27
From Plober:
How can I explain to a friend (in a bar, using as a pen and a paper napkin) that the integer's infinity is 'smaller' than the irrationals's one? The demo I tried was that you couldn't match the integers with the real numbers between 0 and 1 (that 0.xxxxx replacing the Nth number from a different one... that demo), but she used my argument >:| saying that you can add one to the integer's infinite, and the number I was creating was only one more...

I can't think of any other way, and I KNOW the real's cardinality is greater than the integer's one

Answered by Claude Tardif and Penny Nom.



Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences.



Home Resource Room Home Resource Room Quandaries and Queries Mathematics with a Human Face About Math Central Problem of the Month Math Beyond School Outreach Activities Teacher's Bulletin Board Canadian Mathematical Society University of Regina PIMS