.
.
Math Central - mathcentral.uregina.ca
Quandaries & Queries
Q & Q
. .
topic card  

Topic:

variant

list of
topics
. .
start over

One item is filed under this topic.
 
Page
1/1
The board for a variant of chess 2009-03-16
From Adam:
I am trying to figure out how big a piece of wood I need for a variant of chess I thought up. The board essentially is a set of 6 concentric rings with an empty space in the center, each ring consisting of 24 spaces - so essentially 6 concentric 24-sided polygonal rings made up of trapezoidal spaces. I know the interior angle of the shape (15 degrees), but I can't figure out the size this thing should be.

All I know is that the innermost ring will have the smallest spaces, and that those spaces need to be able to accommodate chess pieces 3/4" wide without them overlapping onto neighboring spaces. That is to say, the short parallel side of the trapezoidal space on the innermost ring should be at least 3/4". But I have no clue how to extrapolate the full diameter of the board from that one measurement. HELP! Adam Goss saganth@yahoo.com

Answered by Stephen La Rocque.
 
Page
1/1

 

 


Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences.

CMS
.

 

Home Resource Room Home Resource Room Quandaries and Queries Mathematics with a Human Face About Math Central Problem of the Month Math Beyond School Outreach Activities Teacher's Bulletin Board Canadian Mathematical Society University of Regina PIMS