From Kelley: A manufacturer of skis produces two types: downhill and cross-country. Use the following table to determine how many of each kind of ski should be produced to achieve a maximum profit. What is the maximum profit? What would the maximum profit be if the time available for manufacturing is increased to 48 hours.
From William: A gold processor has two sources of gold ore, source A and source B. In order to keep his plant running,
at least three tons of ore must be processed each day. Ore from source A costs $20 per ton to
process, and ore from source B costs $10 per ton to process. Costs must be kept to less than $80 per day.
Moreover, Federal Regulations require that the amount of ore from source B cannot exceed twice the
amount of ore from source A. If ore from source A yields 2 oz. of gold per ton, and ore from source B
yields 3 oz. of gold per ton, how many tons of ore from both sources must be processed each day to
maximize the amount of gold extracted subject to the above constraints?
I need a linear programming solution or algorithm of the simplex method solution.
Not a graphical solution. Thanks. Answered by Janice Cotcher.
From Sara: A diet is to include at least 140 mg of Vitamin A and at least 145 mg of vitamin B. these requirements are to be obtained from two types of food. type X contains 10 mg of vitamin A and 20 mg of vitamin B per pound. Type Y contains 30 mg of vitamin A and 15 mg of vitamin B per pound. if type X food costs $12 and Type Y $8 per pound, how many pounds of each type of food should be purchased to satisfy the requirements at the minimum cost? Answered by Claude Tardif and Harley Weston.
The following problem was given to grade eleven algebra students as a homework assignment. To manufacture cushions and pillows, a firm uses two machines A and B. The time required on each machine is shown. Machine A is available for one full shift of 9.6 hours. Machine B is available for parts of two shifts for a total of 10.5 hours each day.