5 items are filed under this topic.
|
|
|
|
|
|
|
|
Triangles with integer sides |
2005-11-04 |
|
From Tammy: I am trying to find another pair of integer sided isosceles triangles, not the same as the ones listed below, with equal areas.
(5,5,8)
(5,5,6) Answered by Chri Fisher. |
|
|
|
|
|
Odd Pythagorean triples |
2003-10-23 |
|
From Kathleen: in a triple can a and b be odd numbers Answered by Penny Nom. |
|
|
|
|
|
Pythagoras & magic squares |
2001-10-09 |
|
From John: My grandson became intrigued when he recently 'did' Pythagoras at elementary school. He was particularly interested in the 3-4-5 triangle, and the fact that his teacher told him there was also a 5-12-13 triangle, i.e. both right-angled triangles with whole numbers for all three sides. He noticed that the shortest sides in the two triangles were consecutive odd numbers, 3 & 5, and he asked me if other right angled triangles existed, perhaps 'built' on 7, 9, 11 and so on. I didn't know where to start on this, but, after trying all sorts of ideas, we discovered that the centre number in a 3-order 'magic square' was 5, i.e. (1+9)/2, and that 4 was 'one less'. Since the centre number in a 5-order 'magic square' was 13 and that 12 was 'one less' he reckoned that he should test whether a 7-order square would also generate a right-angled triangle for him. He found that 7-24-25, arrived at by the above process, also worked! He tried a few more at random, and they all worked. He then asked me two questions I can't begin to answer ... - Is there a right-angled triangle whose sides are whole numbers for every triangle whose shortest side is a whole odd number? and
- Is each triangle unique (or, as he put it, can you only have one whole-number-sided right-angled triangle for each triangle whose shortest side is an odd number)?
Answered by Chris Fisher. |
|
|
|
|
|
Pythagorean triples |
2000-03-01 |
|
From Bob Ross: Could you please tell me what pythagoria triad is.I am a year 10 student. Answered by Chris Fisher. |
|
|
|
|
|
Pythagorean Triples. |
1997-12-04 |
|
From Shameq Sayeed: I've got a couple of problems which I hope you'll be able to solve for me. I'm investigating pythagorean triples, and I have found a trend for the triples themselves, and thus have been able to form a general equation, i.e. a=2x+1, b=2x^2+2x, and c=b+1. Now, I sure this equation works, because I've tried it out and have come up with triples that adhere to a^2 + b^2 = c^2. But I was wondering WHY c=b+1. Is it possible to have c=b+2, and if not why not? THAT is the first problem. Answered by Chris Fisher. |
|
|
|