Math Central - mathcentral.uregina.ca
Quandaries & Queries
Q & Q
. .
topic card  



list of
. .
start over

10 items are filed under this topic.
Infinite Logarithmic Series 2011-08-08
From Sourik:
Dear Expert,

In my Amithabha Mitra and Shambhunath Ganguly's "A Text Book of Mathematics" I found the formula of log (1+x) where the base is e and x lies in between -1 and +1.As I want to learn Mathematics,I am not satisfied with the mere statement of the formula.Please help giving me the full proof.
Thanking you,

Answered by Robert Dawson.
A Taylor polynomial for (lnx)/x 2010-09-29
From Dave:
I have a series problem that I cannot solve. The problem asks for you to compute a Taylor polynomial Tn(x) for f(x) = (lnx)/x. I calculated this poly out to T5(x) and attempted to use this to identify a pattern and create a series in order to calculate Tn(x). However, the coefficients on the numerator out to F5prime(x) are as follows: 1, -3, 11, -50, 274... Ok, so the negative is an easy fix -> (-1)^n-1. But the other coefficients are stumping me. I can't see any sort of pattern there and I've tried every trick I know. Is there another way to go about this? Thanks!
Answered by Chris Fisher.
The Maclaurin series generated by f(x)=x^ cosx + 1 2005-08-10
From Latto:
f(x)=x3cosx + 1. but when I take the derivatives, I couldn't see a pattern. Can you help?
Answered by Penny Nom.
A Taylor series for ln(x) 2005-04-16
From Anood:
i have to represent ln(x) as a power series about 2

i`m not getting the final answer which is ln 2+ sigma (((-1)(n+1)/ (n*2n))*(x-2)n). i don`t get the ln 2 part

i show you my trial

f(x)= ln x.

f-(x)=(1/x) .

f--(x)= (-1/x2)*1/2!

f---(x)= (2/x3)*1/3!

f----(x)= (-6/x4)* 1/4!

so the pattern shows me that f(n)= ((-1)(n+1))/xn *n)

so f(2)= sigma ((-1)(n+1))/2n *n) *(x-2)n

so as you see i don`t get ln 2

Answered by Penny Nom.
The third derivative 2004-10-15
From Holly:
Why would you ever take the third derivative?
Answered by Harley Weston.
Programming without trig functions 2004-05-25
From Derek:
I am a programmer trying to calculate the following.

What is the formula to find the cross-sectional area of a cylinder with out using any trig functions? or better yet, how can you calculate any given volume in a cylindrical tank with spherical heads with out trig functions?

I am using a PLC (programmable logic controller) to do this and trig functions are not available.

Answered by Harley Weston.
Cosine of 35 degrees 2004-03-03
From Jason:
How do you find the exact solution to cosine 35 degrees.
Answered by Chris Fisher.
A Taylor series 2001-04-27
From Karan:
Given the following information of the function
  1. f''(x) = 2f(x) for every value of x

  2. f(0) = 1

  3. f(0) = 0
what is the complete Taylor series for f(x) at a = 0

Answered by Harley Weston.
Maclaurin series again 2000-09-23
From Jason Rasmussen:
I suppose my confusion comes into play when I am trying to figure out where the xn term comes from. I know that the Power Series notation is directly related to the Geometric Series of the form sigma [ brn ] where the limit is b/(1-r) for convergence at | r | <1. Therefore, the function f(x) needs to somehow take the form of b/(1-(x-a)), which may take some manipulation, and by setting r = (x-a) and b = Cn, we get the Geometric Series converted to the Power Series. Taking the nth order derivative of the Power Series gives Cn = fn(a)/n!. There must be a gap in my knowledge somewhere because I cannot seem to make f(x) = ex take the form of f(x) = b/(1-(x-a)). Maybe I should have labelled my question as "middle" because it may be more of a personal problem with algebra and logarithms. Or, am I to assume that all functions can be represented by sigma [fn(a) * (x-a)n / n!]?
Answered by Harley Weston.
A Maclaurin series 2000-09-21
From Jason Rasmussen:
I have a question regarding power series notation for certain functions within the interval of convergence.
Answered by Harley Weston.



Math Central is supported by the University of Regina and The Pacific Institute for the Mathematical Sciences.



Home Resource Room Home Resource Room Quandaries and Queries Mathematics with a Human Face About Math Central Problem of the Month Math Beyond School Outreach Activities Teacher's Bulletin Board Canadian Mathematical Society University of Regina PIMS