







A pattern for a truncated cone 
20131220 

From Josh: I need to know how to layout a truncated cone with a base diameter of 18" a top
Diameter 15.25 and a height of 20". Your help will be greatly appreciated. Answered by Penny Nom with a spreadsheet by Don. 





Pattern for a truncated cone 
20070511 

From Mike: I have been trying to get this cone flat so I can build this column. Can you please help me so I can figure this out? Thanks for your help. Answered by Stephen La Rocque. 





The volume of a truncated rectangular pyramidal pond 
20160513 

From Paul: How do you calculate a partially filled truncated rectangular pyramid if you always know the bottom rectangle, the maximum height top rectangle perimeter, but have a varying height. Similar to filling up a pond you know the current height and dimensions at the max rectangle how do you calculate it half full i.e. 10x30 outside perimeter with a 2x8 base and a max height of 6ft how do you calculate it at 3ft without remeasuring the top perimeter.
Thanks,
Paul Answered by Harley Weston. 





The diameter of the top of a truncated cone 
20160124 

From Peter: I am trying to calculate the diameter of a truncated cone given
one diameter the height of the cone and a 10% taper from one end
to the other. For example a butter churn is 18" tall and 9" in
diameter at the base. the sides need to slope inward at 10%
What is the diameter at 9" and 18" Answered by Penny Nom. 





The height of a truncated cone 
20151204 

From Jack: I need to build a truncated cone that has a top of30 inches and a base of 64 inches . The sides need to be at a 64.5 degree angle. This will determine the height. Can this be calculated? Answered by Penny Nom. 





A truncated squarebased pyramid 
20141022 

From Beth: How do you find the height of the original squarebased pyramid when given the sides (12cm) of the base and height (6cm) of the truncated pyramid, as well as the sides (3cm) of the base of the chopped off top (chopped off parallel to the base)? Answered by Penny Nom. 





The volume of a pond 
20130814 

From Kelly: I have a pond that measures 335 feet wide, 385 feet long and 18 feet deep with a 4:1 slope on all four side. How do I figure out how many gallons of water this pond will hold? Answered by Harley Weston. 





Stairs for the new community center, part 2 
20121113 

From Emily: Plans for a set of stairs for the front of a new community center use the ratio of rise to run of 2 units to 5 units.
B. Sketch a set of stairs that meets the risetorun ratio of 2 units to 5 units. Answered by Penny Nom. 





A label to cover a plastic cup 
20121023 

From Kevin: I'm trying to make a label to cover the entire outer area or a plastic cup. I know there must be a way to figure out the dimensions needed, but I can't seem to figure it out. The circumference of the bottom of the cup is 21.4cm and the circumference at the top of the cup is 29.8cm. The cup is 14.5cm tall. What should the height of the arc from the plane connecting the two ends of the 21.4cm arc. I attached a diagram where x is the value I'm looking for. I'm guessing there is some simple relationship between the length of a line and the arc needed to turn that line into a perfect circle, but I don't know what it is. Can you figure this out and share it with me? Thanks.
Kevin Answered by Penny Nom. 





Making a wind sock 
20120828 

From John: I am trying to build a wind sock and need to be able to lay the shape
out on cloth. I need the wind sock front opening (diameter) to be
3 1/2" and the rear opening diameter to be 1". The windsock needs
to be 9 1/2" long. I tried using the example of the person trying to
make a crayfish trap but got confused and could not figure out my
numbers. Any help would be greatly appreciated.
Thanks
John Answered by Penny Nom. 





A truncated cone: the central angle 
20120717 

From Tom: I have researched several sites, including this one and am fairly confident I can do the calculations required to produce the two radii and the slant height for a truncated cone.
I a somewhat confused by the central angle. Some sites indicate that it should never exceed 180 degrees while others do not. Different examples on your site seem to use this in two different ways in constructing a truncated cone.
Sometimes the angle seems to indicate the section to be removed, while in other examples the angle seems to indicate the section to be saved. Since the two angles will always total 360 I am confused about how to use the info to
calculate the minimum rectangle required to contain the pattern. I'm guessing that in some cases I may need to use the chord or sagitta to determine the desired height and width of the material. Any help is greatly appreciated.
Thank you.
Tom Answered by Penny Nom. 





A lamp shade 
20120515 

From Fleur: I am helping my child make a cone lampshade, the measurements are as follows in "cm's"
21 cm = height
8 cm = top diametre
40 cm = bottom diametre
Please could you give the pattern (cut out) dimensions for final cut. Answered by Penny Nom. 





Cycling and running 
20120507 

From liz: a biathlete travels 20 miles in 2.25 hours. She cycles part of the way at 12 mph and runs the rest at 5 mph. How far did she run? Answered by Penny Nom. 





A water tank is in the shape of a truncated cone 
20120308 

From Victoria: Suppose you have a water tank in the shape of a truncated cone. The larger diameter is K, the smaller diameter is K/2, and the height is also K (all measured in meters). The force of gravity on an object of mass, m, is F=9.8m (measured in Newtons). The density of the water is 1000 kilograms per cubic meter. What is the volume of the tank and how much mass will the tank have when it is full? Answered by Penny Nom. 





A 23 acre airport runway 
20120221 

From Ron: I have a 23 acre plot. If it were in a straight line, would it be enough distance for a plane to take off and land if the plane needed 1 mile? Answered by Robert Dawson and Penny Nom. 





Running 5 km 
20120112 

From Fayeann: What amount of time will it take a person running 7 m/s to travel a distance of 5 km? Answered by Penny Nom. 





Building a custom range hood 
20111008 

From Bill: I'm building a custom range hood for a customer with special order material that matches
their newly installed cabinets and I need it to be perfect. The hood is basically a pyramid
but the 4th side is the flat wall at the back and a flat, rectangular top. I need to calculate
the bevel and miter of the three sides but I never was very good with geometry functions
(although I am fairly good with other math fields). I either need the calculations from you
at least (shudder) a formula or set of formulas so that I can calculate them myself. Answered by Harley Weston. 





The volume of a hopper 
20110413 

From michael: I have a tank that is 72" x 72" at the top and 10" x 10" at the bottom
and is 31" tall. I need to calculate the cubic feet of the tank Answered by Penny Nom. 





The volume of a flower pot 
20110407 

From kp: I have 2 flower pots with the following dimensions that I am trying to calculate the
volume of Soil I will need to fill them. pot #1 29"tall, top of pot 31.5 inches across( radius of 15.5") the bottom of the pot is 21"across (radius 10.5)
Pot #2 29"tall, top of pot 26 across (radius 13") the bottom of the pot 17'"a cross (radius 8.5")
thank you
KP Answered by Penny Nom. 





New Brunswick hst 
20110325 

From andy: what is the short formula to get the hst 13% out of the total price of an item Answered by Penny Nom. 





Making a truncated cone 
20110218 

From lisa: We need to make a cone that has the following dimensions.
143/8" diameter on large end
133/8" diameter on small end
4" tall
What are the dimensions I need to cut in order to make a cone with one seam? Answered by Stephen La Rocque. 





Calibrating a conical tank 
20110205 

From Bill: Hi, I have a round tank with tapered sides where I know the diameter at the top and bottom. Is there a formula I can use to calculate the volume by measuring from the bottom up the side (at the angle of the side) to any given point? Thanks, Bill Answered by Stephen La Rocque and Penny Nom. 





A truncated cone 
20101231 

From jagjeet: dear suppose i have cone of 50cm radius at base and 100cm radius at top at a height of 80cm. now keeping base radius of 50cm and height of 80cm i want to increase top radius to 150cm how will i do that. plz height m talking abt is vertical height not slant height Answered by Penny Nom. 





The volume of a truncated pyramid 
20101012 

From A: what is the formula to find out volume of a pyramid with individual length and breadth? For example bottom size is 6.5m x 6.5m, top size 1.5m x 4.2m and height 0.8m. please send me the formula. Answered by Stephen La Rocque. 





Volume of a styrofoam cup 
20100623 

From Stacy: how do you find the volume of a truncated cup with height of 3, top diameter of 2.5, and a bottom diameter of 2 Answered by Penny Nom. 





More on a truncated cone 
20100528 

From Mike:
Question from Mike, a parent:
I was reviewing this question and answer:
http://mathcentral.uregina.ca/QQ/database/QQ.02.06/phil1.html
But I have trouble with this part:
Now if we express the radius of the inside circle as r and the outside circle's radius is R, then this means r/R is 911/1728. But earlier we said that the outside radius R is simply w more than the inside radius r, so R = r + 282. That means that r/R = r/(r + 282). Now we can simply solve the equation for r:
r/(r+282) = 911/1728
This means r = 314 mm (with rounding).
Can I get more detail on the method to solve for r?
Thank you,
Mike Answered by Penny Nom. 





A 3D cardboard cupcake 
20100130 

From Margaret: Hi,
I'm an art student and I'm attempting to build a 3D cupcake out of cardboard.
I want it to have a circular base of 8.5 inches and sides that are 7'' tall and slope outward so the top of the base is 29'.
The top with the frosting would be a detachable lid made from a cone with a base circumfrance of 29".
My problem is how to cut the side so they will slope out, I'm pretty sure there needs to be a curve, however I don't how to calculate the degree of it.
Ideally I want the sides to be a single piece of cardboard.
I also don't know how to calculate the arc needed to make a cone who's circular base's circumfrence is 29''.
Thanks,
Margaret Answered by Stephen La Rocque. 





Truncated Octagonal Prism 
20091226 

From freitas: the top plane of the truncated octagonal right prism is 45 degree with respect to horizontal. find the volume Answered by Janice Cotcher. 





A truncated cone 
20091111 

From Lucian: I need to calculate the bottom inside diameter of a truncated cone.
The top insdie diameter is 1450mm.
The material is 6mm thick
The cone angle is 20 degrees
The slant length is 152mm
I would like a formula so that I can build a spread sheet Answered by Penny Nom. 





The volume of a telephone pole 
20090811 

From robert: 12.5"@ base x 7" @ top and 40' height. How would I find the volume in cubic feet for a telephone pole with these dimensions? Answered by Harley Weston. 





A cone with the top cut off 
20090802 

From Paul: I am making a cone with a diameter of 1300, a base of 500, a side length
800. I need to workout so I can draw it out flat, cut it out, and make into
a cone. Answered by Harley Weston. 





The dimensions of a larger cup 
20090523 

From Elizabeth: Hey
If i have a cup that holds a volume of 477mL and the bottom radius is 2.8cm and the top radius is 4.9cm and the height is 10cm. If i increase the volume by one and a half times what is the new measurements if the cup is directly proportional to the first one.
Thank you Answered by Stephen La Rocque and Penny Nom. 





12 oz. cup 
20090419 

From Tom: I am a ceramic teacher and wanted my students to make a 12 oz. cup, what formula should we use? Answered by Chris Fisher. 





A truncated tetrahedron 
20090205 

From Brad: If you take a regular tetrahedron and truncate it so you keep the original three 60degree angles around one vertex but the legs originating from it become any three consecutive terms of the Fibonacci series the new base is one triangle of a pentagon.
I want to know the height of the new pyramid relative to its new base and the angles between the base and the other three sides. Answered by Robert Dawson. 





The volume of a feed hopper 
20081218 

From John: I need to calculate the volume of a feed hopper, and I'm not sure how to break it down. The top of the hopper is 36" x 36", it is 30" deep, and ends at a 6" x 6" plate. One side of the hopper is straight top to bottom, of course tapering on two sides to meet at the plate. The other three sides angle down at about 75 degrees. I need to determine the cubic foot volume of this hopper (it is used for ground coffee) so I can configure a vibrator to knock down residual grounds. Thanks. Answered by Robert Dawson. 





The volume of a cyclone 
20081113 

From Dianna: I need to figure the cubic yards of a cyclone. 144" down to 48" 60" high Answered by Penny Nom. 





An irregular, truncated pyramid 
20081024 

From phillip: Hi, I have a rectangular base to square top, pyramid shape to fabricate out
of steel plate (4 sections). The base is 3000mm by 800mm, the height is
1100mm and the top is 350mm square. What I need to know is the
lengths of the sides of the plate(were they meet vertically). Hope ive made
it clear enough. Thanks Phil. Answered by Stephen La Rocque. 





The rise over the run 
20081007 

From Mak: what is the ratio of the rise to run? Answered by Penny Nom. 





A cardboard spaceship 
20080831 

From Lee: I am building a "cardboard" spaceship for my 4 year old grandson.
The cabin is a dishwasher box with a cool control panel and elipse shaped
windows.
I really need help designing the cone or"nosecone".
The diameter of the base is 26", 24" tall, with a 6" diameter opening
at the top.
Thank you for the help!
Lee Answered by Penny Nom. 





A truncated cone 
20080411 

From jason: i need to know how to figure the cubic feet of a cone that the top is 72" wide the bottom is 25" wide and it is 48" tall.
is there a specific formula for this? Answered by Penny Nom. 





The volume of a truncated prism 
20080303 

From jhey: The volume of a truncated prism is 6240 cu cm. The base is a right section in the form of an equilateral triangle. The edges perpendicular to the base are 15 cm, 18 cm, and 15 cm long. Find the length of one side of the base. Answered by Harley Weston. 





Stanley Cup costume (truncated cone pattern) 
20071019 

From Janet: You hockey fans will love this question. I am making a Stanley Cup halloween costume and need a flat pattern for the bowl portion. I believe a truncated cone will work nicely. Base circumference needs to be 32" (10.19 diameter). Top circumference needs to be 44" (14 diameter). It needs to be 8" high. Thanks for your help. Answered by Stephen La Rocque. 





A truncated prism 
20070924 

From Simon: What is the name of a triangular prism with the top of the top of the prism cut off called please.
It is therefore flat on top and flat on the bottom with prism sides. Thanks. Answered by Harley Weston. 





Solving an equation with fractions 
20070920 

From Len: I am having a brain cramp or maybe I just forgot some basic math,
but I am having trouble solving for "r" in your truncated cone example
where r/(r+w)=r/R or r/(r+282)=911/1728. Could you refresh my memory
by showing the steps to solve for "r"? Answered by Harley Weston. 





A truncated cone 
20070824 

From JUAN: i need to create a template for a cone that has a 4 " opening at top, a 14" base and 12" tall.Can u tell me how to achieve this ?
u have similar problems but when i try to do it , is not coming up right , please help.. Answered by Harley Weston. 





A truncated cone 
20070310 

From Russell: Hello, I have attempted to use two of your answers already given and had no real success. This young lady is making a cat food dispenser using a truncated cone. The top of the cone as a diameter of 5 inches with a height of 6 1/2 inches and diameter of 3 inches for the bottom.
Could you please map out a solution for the both of us to understand? Thank you so much for your time and for this wonderful service.
Russell Answered by Penny Nom. 





The volume of a styrofoam cup 
20070308 

From leanna: find the volume of a styrofoam cup if the diameter of the top is three inches, the diameter of the base is 2 inches, and the height is 4 inches. Answered by Penny Nom. 





A metal shroud for a outdoor fireplace 
20070306 

From Arnold: I am making a metal shroud for a outdoor fireplace, it is basically a lampshade type pattern,like the bottom of a cone.The top has to be 6 inches to fit the 6 inch stovepipe,and the bottom will be a 24 inch circle. the sides will be 18 inches in length.With the cost of the sheet metal,I can only afford to cut this out once,can you help me with the pattern ? Answered by Penny Nom. 





Motorcycle expansion chamber design 
20061114 

From David: I'm interested in calculating cone information regarding motorcycle expansion chamber design for example. I guess it's called a truncated cone, from what I've read so far. If I know the center line height, small radius, and large radius of a truncated cone then, how can I calculate the angle (included angle?) the cone forms? I'd like to know the variations of the formula so I can calculate for angle, or length, or one of the diameters if I know the other two measurements. Answered by Stephen La Rocque. 





Constructing a cone 
20060920 

From Suresh: i want to know the required size of plate for cone rolling,sizes are 2950mm is bottom dia,894 is top dia and 600 is height.I have already read u r answers but i little bit confused ,harely and sue have given useful answers but when i worked both method the required plate size is different. so i like to know which method is easy and correct.and also i like know whether it can be rolled without segment my rolling machine width is 1500. Answered by Penny Nom. 





A truncated cone 
20060528 

From Phil: Hi, I am an art student and I am trying to make a "truncated cone" (ie: a cone with the top cut off) out of sheet metal. I need to design a template first and am having problems working out the angles. The truncated cone is 250mm high, 550mm wide at the bottom and 290mm wide at the top. Can you help? Answered by Stephen La Rocque. 





The radius of a soccor ball 
20060505 

From Jacqui: A soccer ball is made up of hexagons and pentagons with the same side lengths.
A manufacturer wants to produce a ball of certain diameter. The questions that follows is what side length for the polygons will produce a ball of certain diameter. Answered by Chris Fisher. 





How wide is this runway? 
20060427 

From Sam: A runway is 3.75 miles long and covers a total of 5.6 acres. What is the width of the runway? Answered by Stephen La Rocque. 





A lampshade shape 
20060211 

From Rose: Is there a solid shaped like a lampshade? Or do you just call it the bottom portion of a cone? Answered by Penny Nom. 





A pattern for a truncated cone 
20051204 

From Nick: I need to make a large cone segment. The large end has ID of 57 inches and the small end has ID of 23 inches. The cone is essentially a 45 degree cone (90 degrees at the tip). The sides of the segment are 2 feet long. How do I lay out a flat pattern that will fold into this segment? I need to know radius 1 and radius 2 and the angle the piece must be. Answered by Penny Nom. 





A truncated cone 
20051203 

From Sonny: I need to create a template for a cone that has a 2" opening at the top, a
4" base and stands 6" tall. Can you tell me how to achieve this? Answered by Penny Nom. 





A pyramid with its top cut off 
20030721 

From David: What is the name given to a 3D shape that looks like a pyramid with its top cut off? Answered by Penny Nom. 





Runs 
20030316 

From Diana: How many arrangements are there with n 0's and m 1's, with k runs of 0's? (A run is a consecutive set [1 or more] of the same digit; eg. 000 111 0 11 00 has three runs.) Answered by Penny Nom. 





The percentage grade of that hill 
20021105 

From Cathy: If there is an 80ft climb over a kilometer(about 3280ft) what is the percentage grade of that hill? Answered by Penny Nom. 





Running Through a Train Tunnel 
20000401 

From Eugene Chan: A man is running through a train tunnel. When he is 2/3 of the way through, he hears a train that is approaching the tunnel from behind him at a speed of 60 mph. Whether he runs ahead or back, he will reach an end of the tunnel at the same time the train reaches that end. At what rate, in miles per hour, is he running? (Assume he runs at a constant rate.) I think the answer (12 mph) is wrong. Also, I believe it should read 1/3 of the way through, but don't know how to prove it. Could you come up with some way to prove it, please? I would really appreciate it. Answered by Penny Nom. 

