







A locus of points 
20180903 

From Ericka: Find the locus of points three times as far from (0,4) as from (2,0) Answered by Penny Nom. 





Gauss' Addition of whole numbers. 
20180430 

From Brad: I found this on your site. Question: what is the sum of the first 100 whole numbers??
Is there a different formula if the numbers begin at a number other than one? For example
What is the series I want to add is goes from 7  53? Answered by Harley Weston. 





The limit of (e^x1)^(1/x) as x tends to 0 
20180227 

From ARGHA: Find the limit of (e^x1)^(1/x) as x tends to 0. Answered by Penny Nom. 





Dividing a region in half 
20180224 

From mandy: There is a line through the origin that divides the region bounded by the parabola y=4x−5x2y=4x−5x2 and the xaxis into two regions with equal area. What is the slope of that line? Answered by Penny Nom. 





A parallelogram, a rhombus and a rectangle 
20180207 

From Sambo: what do parallelogram, rhombus and rectangle have in common? Answered by Penny Nom. 





A tangent to a curve 
20171022 

From Jasem:
Suppose that
f(x)=(3x3)^1/2.
(A) Find an equation for the tangent line to the graph of f(x) at x=2
(B) Find all values of xx where the tangent line is horizontal, and enter them as a commaseparated list (e.g., 2,3,6). If there are none, enter none.
Values of x Answered by Penny Nom. 





Salary plus commission 
20171016 

From Natasha: Veronika works at Future Shop and earns ₱10.50/h plus 6% commission on sales. Last week Veronika worked 40 hours. What was Veronika’s weekly gross salary if her total sales were ₱2050? Answered by Penny Nom. 





The distance between the origin and a moving point on a graph 
20171016 

From Paulina: Find the rate of change of the distance between the origin and a moving point on the graph of y=x^2 +1 if dx/dt=2 centimeters per second Answered by Penny Nom. 





The volume of a cone without calculus 
20171002 

From Akash: How to find the volume of a cone without the knowledge of calculus? Answered by Penny Nom. 





Simultaneous equations with fractions 
20170909 

From Farah: Hi, my name is Farah. I hope you can help me with this question . X/2 + g/5= 3 and 2g  f = 10 Answered by Penny Nom. 





Simultaneous equations 
20170902 

From keto: xy=2,x^2+xy=12 Answered by Penny Nom. 





Simultaneous equations with fractions 
20170602 

From Jamal: 1/x + 1/y =5 and 1/y  1/x =1 Answered by Penny Nom. 





Forming a cone from a circle 
20170415 

From Tasha: A sector of a circle subtends an angle of 216 degrees at the centre, If this sector is used to form a cone of vertical height ,8cm, calculate the base radius of the cone Answered by Penny Nom. 





Is the square root of 2 plus the square root of 2 irrational? 
20170329 

From haya: how can i prove the the square root of 2 plus the square root of 2 is an irrational number? Answered by Penny Nom. 





Differentiate y = x^x^x 
20170319 

From Nafis: differentiate y = x^x^x Answered by Penny Nom. 





The average rate of change of cot(t) 
20170118 

From Brianna: Hello!
It's been a while since I've taken a math course, and I'm stuck on a problem in my calculus course.
The question is this:
Find the average rate of change of the function over the given interval.
h(t)=cot(t) a) [5pi/4, 7pi/4] Answered by Penny Nom. 





Five equations 
20170116 

From Muhammed: A x 4 = E
B ÷ 4 = E
C + 4 = E
D  4 = E
___________
& A + B + C + D = 100
what is the value of E Answered by Penny Nom. 





Simultaneous equations with fractions 
20161221 

From Kimi: I am stuck on this,can someone please help me????
1/2x+1/3y=11
8x+2/5y=102
Can someone please explain how to solve questions like these??
Or else I will never learn...
Thank you Answered by Penny Nom. 





Two concentric circles 
20161221 

From shrestha: Two concentric circles have radii of 14 cm and 7 cm respectively. Find the area of space between them. Answered by Penny Nom. 





The area and radius of a circle 
20161219 

From india: How do you find the radius of a circle if only the area is given to you? Answered by Penny Nom. 





Is every rectangle a rhombus? 
20161128 

From Robert: not every rectangle is a rhombus.true or false? if false please leave a short explanation. thank you:) Answered by Penny Nom. 





Simultaneous equations 
20161125 

From Rohan: x2/3 + y  1/4 = 13/12
2x/2 + 3 + y/3 = 11/6 Answered by Penny Nom. 





Radius angle and arc length 
20161124 

From pavidthra: Length or arc 11 and angle of subtended 45.need to find a radius Answered by Penny Nom. 





Volume of liquid remaining in a tilted cylinder 
20161108 

From Brian: I am trying to determine the amount of a liquid remaining in a 55 gallon drum when it is tilted at 45 degrees and the liquid level is low enough so that the liquid does not completely cover the bottom of the drum.
Your help is greatly appreciated. Answered by Harley Weston. 





A circle formed from bending a wire 
20161016 

From Deszaree: The same piece of a wire is bent to form a circle
calculate:
a, the radius of the circle
b, the area of the circle Answered by Penny Nom. 





2,0061234...484950 
20160924 

From Mimi: Compute the following:
2,0061234…484950 Answered by Penny Nom. 





The distance around a warehouse 
20160921 

From Chuck: How far do I walk when I walk around a 751,000 sq. ft. warehouse? Answered by Penny Nom. 





Integrate (x^2  4x + 4) ^4/3 
20160915 

From Ifah: Hi i have questions please answer
Integral 2 sampai 3 dari (x²  4x + 4) ^4/3 dx Answered by Penny Nom. 





The radius of a coffee cup 
20160912 

From Brett: What is inside radius, in centimeters of a coffee cup if it holds 350g of coffee when filled to a depth of 9.5 cm? Assume coffee has the same density of water, 1.00g/cm3. A numeric value is expected and not an expression. Answered by Penny Nom. 





A suspension bridge 
20160818 

From sai: The main cable of a suspension bridge has the shape of a parabola. The cables are strung from the top of two towers, 61 metres apart, each 15.25 metres high above the roadway. The cable is 1.5 metres above the roadway at the point that is directly between the towers.
h(x)=a(x30.5)^2+1.5
where a is the constant and its value to be determined.
a) determine the value of the constant a by using that the fact that height of the suspension cable, h(x) is 15.25 metres at each tower. Hence, write the updated model equation. Answered by Penny Nom. 





The modulus of a complex number 
20160729 

From Cheyenne: There's a question on my Summer Assignment I cant figure out. Here it is:
Find the absolute Value of the complex number. 5i
Please help? Answered by Penny Nom. 





Two equations with fractions 
20160722 

From kanesh: p/2+q/3=3
p/4+2q/3=3 Answered by Penny Nom. 





Simultaneous equations 
20160625 

From sena: 2x/3+3y/2=1
4x5y=22
simultaneous equation Answered by Penny Nom. 





Implicit differentiation 
20160606 

From Pranay: Is a circle x^2+y^2=2 a function? If it is not a function,
why is it possible to do implicit differentiation on it?
Thanks. Answered by Penny Nom. 





The volume of a truncated rectangular pyramidal pond 
20160513 

From Paul: How do you calculate a partially filled truncated rectangular pyramid if you always know the bottom rectangle, the maximum height top rectangle perimeter, but have a varying height. Similar to filling up a pond you know the current height and dimensions at the max rectangle how do you calculate it half full i.e. 10x30 outside perimeter with a 2x8 base and a max height of 6ft how do you calculate it at 3ft without remeasuring the top perimeter.
Thanks,
Paul Answered by Harley Weston. 





A pair of equations with fractions 
20160511 

From tiya: hello, i want to know how to solve this question.
m/6+2n/3=6
m/10=2n/5=2 Answered by Penny Nom. 





Covering a site with 6 inches of rock 
20160426 

From Carla: if a pump house that measures 20'x16' sits in the middle of a site that is 50'x60' and you apply crushed rock to the site at depth of 6", how many yards will you need to haul? Answered by Penny Nom. 





Filling a hole with 14 tons of rock 
20160408 

From Barry: If I had 14 tons of inch and one half sized aggregate rock, how large of a square or rectangular shaped hole would I need to hold that amount? Answered by Penny Nom. 





Maximizing the area of a two lot region 
20160403 

From yousef: A man wishes to enclose two separate lots with 300m of fencing. One lot is a square and the other a rectangle whose length is twice its width. Find the dimensions of each lot if the total area is to be a minimum. Answered by Penny Nom. 





Solve for x and y 
20160227 

From ntshidi: Y=1/2x+4and1/4x6 Answered by Penny Nom. 





A bonus of 8% of sales 
20160222 

From Barghavi: A man earns $325 per week plus an additional 8% on any sales over $500.
If he makes $6,250 in sales, how much money in total does he earn that week?
thank you! Answered by Penny Nom. 





Two equations in two unknowns 
20160213 

From Anumba: 4x + 2y = 4
7x  y = 11 Answered by Penny Nom. 





A chord of a circle, the central angle and the radius 
20160126 

From Nishan: If chord length is given along with angle then how to calculate the radius. Answered by Penny Nom. 





A system of linear equations 
20160124 

From kareem: my name is kareem
and i am a student i have a math puzzle and i tried to solved it but it always have same mistake
xy=9
x+z=12
zn=14
y+n=2 Answered by Penny Nom. 





A Max/Min problem with an unknown constant 
20160117 

From Guido: Question:
The deflection D of a particular beam of length L is
D = 2x^4  5Lx^3 + 3L^2x^2
where x is the distance from one end of the beam. Find the value of x that yields the maximum deflection. Answered by Penny Nom. 





Integration of dx/(x^2+1)^3 
20160107 

From Ishank: Integration of dx/(x^2+1)^3 Answered by Penny Nom. 





A relative maximum and a relative minimum 
20151228 

From kemelo: show for the following function f(x)=x+1/x has its min value greater than its max value Answered by Penny Nom. 





Constructing simultaneous linear equations 
20151228 

From Deborah: Linda thinks of a twodigit number. The sum of the digits is 8. If she reverses the digits, the new number is 36 greater than her original number. What was Linda's original number?
Thank you! Answered by Penny Nom. 





A bus trip 
20151215 

From Michelle: I do not know what equation(s) should be used in order to obtain the answer(s) to this word problem.
A bus was rented for a trip, the cost was dived equally amongst the passengers. During the trip, someone mentioned that if there were 9 more passengers, they would have paid each 5$ less. Another mentioned that if there were 6 less passengers, they would have each paid 5$ more. What is the cost of renting the bus and how much must each passenger pay. Answered by Penny Nom. 





Linear equations in two variables 
20151213 

From priya: I have problem in solving these equations please help me today itself very urgent:
I)2x+y=y
II)pie*x+y=9 Answered by Penny Nom. 





A tangent line to a parabola 
20151202 

From pei: Given that the line y=mx5 is a tangent to the curve y=2x^2+3 find the positive value of M. Answered by Penny Nom. 





The diagonal of a rhombus 
20151114 

From Om: In a rhombus ABCD, angle A=60° and side AB=6 cm. Then diagonal BD is ? Answered by Penny Nom. 





2.236... 
20151013 

From Ann: 2.236...
What is the most specific category of numbers does this fall into? Rational or Irrational? Does the .... mean that it repeats? Answered by Harley Weston. 





Why is the area of square not conserved when it changes to a rhombus? 
20150628 

From shubham: Why is the area of square not conserved when it changes to a rhombus, both have equal sides still rhombus have less area than square.?? Answered by Penny Nom. 





1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 x 0 + 1 = ? 
20150618 

From Sharon: 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 x 0 + 1 = ?
I got 1 as my answer despite BODMAS making it 12 because logic tells
me I ought to place brackets around the first set of repeated addition. Could you
please clarify this for me? Thank you 😊 Answered by Harley Weston. 





A tangent to y = x^3 
20150531 

From Brayden: Show that a tangent line drawn to the curve y=x^3 at the point (d,f (d)), where d>0, forms a right triangle with the x and y axes in quadrant 4 whose area is (2/3)d^4. Answered by Penny Nom. 





Two lorries approaching an intersection 
20150515 

From Nuraini: Two straight roads intersect at the right angles. Lorry A, moving on one of the roads,
Approaches the intersection at 50mi/h and lorry B, moving on the other roads, approaches the intersection at 20mi/h.
At what rate is the distance between the lorry changing when A is 0.4 mile from the intersection and B is 0.3 mile from the intersection? Answered by Penny Nom. 





A calculus optimization problem 
20150514 

From Ali: Given an elliptical piece of cardboard defined by (x^2)/4 + (y^2)/4 = 1. How much of the cardboard is wasted after the largest rectangle (that can be inscribed inside the ellipse) is cut out? Answered by Robert Dawson. 





The number of possible musical notes using an nkey instrument 
20150504 

From Farihin: Lets say that i have keys, and each key is for notes of a musical instrument,
So i wanted to find out the number of notes i can get for a certain number keys,
of course in the form of an equation. Notes can use as many keys, it can use 1, or 2, or 3, or even 100.
Notes in real life is not as such, but ignore reality.
I tried doing this but i can't seem to find a formula for it.
For example, i have 4 keys, say A, B, C, and D.
so, for notes that uses one key are 4, which is A, B, C, and D themselves.
for notes that uses two keys are 6,
AB, AC, AD, BC, BD and CD.
for notes that uses three keys are 4,
ABC, ABD, ACD and BCD.
lastly for notes that uses all four keys is 1, ABCD.
So, the total will be 4+6+4+1=15#
The nth term for the first equation is n, the second is [(n^2)n]/2
the third and the fourth, i don't know but the final answer should be like,
n + [(n^2)n]/2 + [3rd] + [4th]
Sorry for the long question though... Answered by Penny Nom. 





The method of elimination 
20150501 

From oreanna:
Question from oreanna, a student:
How do u solve 2x+9y=3
7x4y=25 in elimination Answered by Penny Nom. 





The volume of a sphere 
20150430 

From Cassidy: How do you find the radius of a sphere that has volume 36pI? Answered by Penny Nom. 





Constructing a box of maximum volume 
20150414 

From Margot: I need to do a PA for maths and I'm a bit stuck.
The PA is about folding a box with a volume that is as big as possible. The first few questions where really easy but then this one came up.
8. Prove by differentiating that the formula at 7 does indeed give you the maximum volume for each value of z. Answered by Penny Nom. 





A word problem with fractions 
20150409 

From Lorraine: If the numerator of a certain fraction is doubled and the denominator is increased by 1, the fraction becomes 1/2.
If the numerator of the original faction is squared and the denominator is decreased by 2, the fraction becomes equal to 1.
Let x be the numerator and let y be the denominator of the original fraction.
Write down two simultaneous equation in x and y.
Solve these equations to find two possible values for the given fraction. Answered by Penny Nom. 





The area of the ring between two concentric circles 
20150408 

From Conner: The area of the ring between two concentric circles is 25pi/2 square inches. The length of a chord of the larger circle tangent to the smaller circle is? Answered by Robert Dawson. 





Is a rhombus a square? 
20150324 

From Justin: Is a rhombus a square? Answered by Penny Nom. 





Extraneous solutions 
20150307 

From Emily: I have a question about Extraneous Solutions, Because I was recently researching to figure out
on how to determine that a solution is extraneous and many of the answers talked about how if a answer is negative
that it should always be extraneous but now I found out that positive solutions can also be considered as extraneous solutions
so that is why I am really confused Extraneous Solution's.
I would really appreciate it if you could clearly explain to me how to determine an extraneous solution from a normal solution.
Thanks,
Emily Answered by Chris Fisher. 





The radius of a cylinder 
20150226 

From Rose: Hi. I want to know how to find the radius of cylinder.
When I have height (35cm) and area of the curved surface(880sq.cm).
I know the formula is 2πr(h+r). But I can't understand how to find it's radius.
Please help me. I really need your help. Answered by Penny Nom. 





Two equations with fractions 
20150226 

From Pulane: Hi math centre I've been trying to solve these equations for days now please help
(6/x)(1/y)=4
(9/x)+1=(2/y)
Please help me solve them simultaneously
Thank you Answered by Penny Nom. 





f(x)=(x^21)/(x1) 
20150221 

From Ahmed: Is f(x)=[(x^21)/(x1) and x=2 at x=1] differentiable at x=1 ? Why ? Answered by Penny Nom. 





Two equations 
20150216 

From nigel: 2x+1/2y=1
6x3/2y=21 Answered by Penny Nom. 





The center and radius of a circle 
20150206 

From ariana: I need to find the center and the radius of this circle. I don't know how to put 9/2
than square it into a fraction.
x^2 + 2x + y^2 +9y=5 Answered by Penny Nom. 





128/(16)/(2) 
20150128 

From jackie: 128/(16)/(2) I was wondering if you can show me how to work this question out Answered by Harley Weston. 





Is a square a trapezoid? 
20150126 

From Katie: Can a trapezoid sometimes be a square? Answered by Penny Nom. 





Rates, percentages and units 
20141230 

From Kenneth: Hello:
If percentages have no units, why are some percentages called rates, as in interest rate, or
perhaps a tax rate of 7% as an example? A rate has units of different quantities.
I thank you for your reply. Answered by Robert Dawson. 





4 card hands 
20141102 

From Ronaldo: How many Mus hands (combination of 4 cards allowing repetitions)
can be made from a deck containing 8 types of cards?
RRRR, RRRC, RRRS, RRR7, RRR6, RRR5, RRR4, RRRA,
RRCC, RRCS, RRC7, RRC^, RRC5, RRC4, RRCA,
RRSS, RRS7, etc.
I think 330. If so, what is the formula? Answered by Penny Nom. 





A linear system 
20141014 

From pheter: 4/x  1/y = 3 .... equation (1)
6/x  2/y = 5 .... equation (2) Answered by Penny Nom. 





How does pir^2 = 1/4pid^2? 
20141014 

From al: Hi I cant work out the algebra. How does pir^2 = 1/4pid^2 Thanx Answered by Penny Nom. 





Two equations in x and y 
20140925 

From seyilogo: solve y=2x  3 and (4x  2y) / x + y = 1 simultaneously Answered by Harley Weston. 





Continuity on a closed interval 
20140921 

From Pragya: The trouble I'm having is as follows :
a continuous function is most of the times defined on a closed interval,
but how is it possible to define it on a closed interval ,because to be continuous at endpoints of the interval the function's
limit must exist at that endpoint,for which it has to be defined in its neighborhood,but we don't know anything about whether the function is always defined in the neighborhood.
Please help... Answered by Penny Nom. 





Two equations in two variables 
20140918 

From Susan: (28x + 36y)  [20000  .75(28x + 36y) + 60000] = 5000
x + y = 10000
solving two equations involving variables Answered by Penny Nom. 





A tangent to a curve passing through a point not on the graph 
20140915 

From Aquilah: For the curve y = x2 + 3x, find the equations of all tangent lines for this graph
that also go through the point (3, 14). Answered by Penny Nom. 





Water usage in Ames 
20140829 

From Abigail: The City of Ames water treatment plant treats 7 million gallons of water per day on
average to meet water demands. Hypothetically, if water is withdrawn from a
groundwater system with an area of 51.6 square miles
(approximate area of Ames and surrounding area),
what is the depth of water in inches that would have to be added to
the groundwater system annually to replace the water that is withdrawn by the city? Answered by Penny Nom. 





A car passing a bus 
20140824 

From Athish: the driver of the car is travelling at 36 km/hr and spots a bus 80 m ahead of him after 1 hr the bus is 120 m behind the car what is the speed of the bus Answered by Penny Nom. 





Filling three holes with stones 
20140820 

From mark: how many tonnes of hardcore/crushed stone would it take to fill
1 hole 9ft diameter 5ft deep
and 2 holes both 3ft diameter and 5ft deep Answered by Penny Nom. 





The sum of the first 50 terms of an arithmetic progression 
20140726 

From Joshua: Hello ...my is Joshua...I'm a grade 11 student...I got a question
Calculate the sum of the first 50 terms of an arithmetic progression: 112:98:84 Answered by Penny Nom. 





The method of elimination 
20140705 

From leo: please explain how can i solve this problem
3x6y=38
6x9y=44
using elimination and simultaneous method thank you :) Answered by Penny Nom. 





Differentiate ln[x(2x4)^1/2] 
20140628 

From Igwe: If y=In[x(2x4)^1/2],find dy/dx at x=3 Answered by Penny Nom. 





Simultaneous equations 
20140620 

From rana: solve the simultaneous equations
a)3x=7y
12y=5x1 Answered by Penny Nom. 





The derivative of sin(x) 
20140426 

From Lucky: f(x)=Sin(x), by first principle its f'(x)...show me how to solve such problem. Answered by Penny Nom. 





Simultaneous equations with fractions 
20140419 

From Maryam: I looked at your example of simultaneous equations with fractions and applied it to my question from an educate exam papers but I couldn't get it to work. The question is:
x/8  y = 5/2
3x + y/3 = 13 Answered by Penny Nom. 





A frustum of a pyramid with a square base 
20140418 

From tuba: a pyramid has a base of 10 m and is 15 m high.what is the volume? if 6m is removed from top what is the volume of the remaining frustum? Answered by Penny Nom. 





The area bounded by the Xaxis and y=x^(2)4 from 5 to 0 
20140415 

From Lexie: Determine the area that is bounded by the following curve and the xaxis on the interval below. (Round your answer to three decimal places)
y=x^(2)4, 5 ≤ x ≤ 0
The answer is 32.333 but I have no idea how to get there. Answered by Penny Nom. 





A tangent of the curve (x/a)^n+(y/b)^n =2 
20140415 

From sudhir: the equation of tangent of the curve (x/a)^n+(y/b)^n =2. at(a,b) is Answered by Penny Nom. 





The locus of a point 
20140404 

From srishti: A point P moves such that the difference between its distance from the origin and from the axis of x is always a constant c . what is the locus of the point? Answered by Penny Nom. 





A cable around the Earth 
20140313 

From fikile: By how much must an equatorial cable be extended in order that it runs 1meter above the ground? Answered by Penny Nom. 





A parabolic suspension bridge 
20140311 

From jeffrey: the towers of a parabolic suspension bridges 200 meter long are 40 meter high and the lowest point of the cable is 10 meter above the roadway.Find the vertical distance from the roadway to the cable at 50 meter from the center. Answered by Penny Nom. 





What are the possible lengths of the hypotenuse? 
20140307 

From audrey: The three sides of a right angles triangle measure x2, x+5, and 2x1 in length.
What are the possible lengths of the hypotenuse?
... I'm doing the equation c2=a2+b2 and subbing in the numbers but nothing makes sense Answered by Penny Nom. 





Simultaneous fractional equations 
20140215 

From benjamin: hi math central. benjamin here. during class, i had problem with this topic. normally i wont have problems with math but this topic i just too hard for me. please help i am having exam and test next week on this topic
here is the question:
using substitution method, solve the simultaneous equation.
(x+1)/(y+2)=0.5
(x2)/(y1)=1/3 Answered by Penny Nom. 





The volume of a frustum 
20140202 

From mike: volume of frustum R23", r 18", h 16" Answered by Penny Nom. 





Conics 
20140201 

From Kassidy: Hey, I have searched through all the questions about conics and how
people use them in the real world, but none of them were very specific
on how they are applied and the process, why it's so important etc.
I have a project due asking these questions and it's been very difficult
finding the right answer, if you could name jobs, how they are use and
specifically applied that would be greatly appreciated. Answered by Penny Nom. 





Two nonlinear equations 
20140126 

From Naryn: (1÷x) + (1÷y) = (7÷12)
xy = 12 Answered by Penny Nom. 





An inequality 
20140125 

From LANELL: this is a problem to solve: 1/3 + 2/7 >=x/21  part of the answer is (oo)
not exactly that similarit is on a calculator as a symbol sure you know what it is I am talking about the x will be a number Answered by Penny Nom. 





25% profit 
20140102 

From Finn: Hello,
The question is all about buyandsell business.
Problem:
Pencil  $6 for whole sale price
$8 if I sell the item
How do I get the 25% profit? (you can change the whole sale price and the retail price[if i sell the item])
if I buy the pencil at 24 pieces and sell it at 24 pieces. Answered by Penny Nom. 





The popcorn box problem 
20131107 

From Dave: We know that calculus can be used to maximise the volume of the tray created when cutting squares from 4corners of a sheet of card and then folding up.
What I want is to find the sizes of card that lead to integer solutions for the size of the cutout, the paper size must also be integer. EG 14,32 cutout 3 maximises volume as does 13,48 cutout 3.
I have done this in Excel but would like a general solution and one that does not involve multiples of the first occurence, as 16, 10 cutout 2 is a multiple of 8,5 cutout 1. Answered by Walter Whiteley. 





Substitution type simultaneous equations 
20131103 

From Kayla: I am having problems with substitution type simultaneous equations, when the variable you are substituting is a algebraic one:
y=x^23x+4 and 3x2y=1
I have rearranged 3x2y=1 to get x=(1+2y)/3 but when I substitute this x value into the other equation, I get the wrong answers!
Would appreciate any help! Thank you. Answered by Penny Nom. 





Water flowing out of a tank 
20131103 

From Carolyn: The flow of water out of a hole in a tank is known to be proportional to the square root of the height of water above the hole.
That is,
dV/dt (proportional to) sq root (h)
The tank has a constant crosssectional area A, show that the height of water in the tank is given by
h = ((kt+C)/2)^2
If the tank is 9 metres high, and it takes 5 hours for it to drain from full to half full,
how much longer will we have to wait until it is completely empty? Answered by Penny Nom. 





Extraneous solutions 
20131022 

From tom: i need an equation where x=2 is the correct answer and x=3 is an extraneous solution. can you provide me with such an equation?? Answered by Harley Weston. 





A frustum 
20131012 

From Lily: A cone of height 6in. and radius of base 4in. has its top cut off by a plane parallel to its base and 4in from it.
Find the volume of the remaining frustum.
I have worked out the volume of the entire cone but I don't know how to work out the radius of the top of the frustum.
Thanks Answered by Penny Nom. 





Proportional rates 
20131010 

From Varsha: A province's Ministry of Social services has found that both the number of people needing social assistance and the province's total expenditures on social assistance are proportional to the rate of unemployment. Last August when the provincial unemployment rate was 8.4 %, the province provided assistance to 89,300 individuals at a total cost of 4107.4 million. The forecast unemployment rate for next August is 7.9%. How many people can the province expect to need social assistance next August? What amount should the province budget for social assistance in August? Answered by Penny Nom. 





Maximize the volume of a cone 
20131009 

From Conlan: Hi I am dong calculus at school and I'm stumped by this question:
A cone has a slant length of 30cm. Calculate the height, h, of the cone
if the volume is to be a maximum.
If anyone can help me it would be greatly appreciated.
thanks. Answered by Penny Nom. 





The sum of all whole numbers from 1 to X 
20130906 

From Tim: How do I develop a rule for the sum of all whole numbers from 1 to X when I have no idea how to do this Answered by Penny Nom. 





Ordering crushed stone 
20130903 

From Prakash: Dear Sirs,
I am working in a Soft Landscaping contracting company. If I need to purchase crushed stone with the size 5070mm for $53,429 m^2$ area, how many 20feet containers should I need to order to my suppliers? The 20foot container has internal dimensions 5,897 mm by 2,348 mm by 2,285 mm and the $53,429 m^2$ area is to be covered by 10 cm of stone. Answered by Harley Weston. 





Equal ordinate and abscissa 
20130815 

From sonit: the slope of tangent to the curve y=(4x^2)^1/2 at the point, where the ordinate and abscissa are equal, is Answered by Penny Nom. 





Differentiate x^x  2^sinx 
20130809 

From tarun: derivative of x^x  2^sinx Answered by Penny Nom. 





Practical uses of trigonometry 
20130806 

From tharindu: use of trigonometry Answered by Penny Nom. 





What is the value of 2((i)^(1/2))? 
20130722 

From Delilah: What is the value of 2((i)^(1/2)) ?
i.e. absolute value of 2 multiplied by square root of i. Answered by Penny Nom. 





Simultaneous equations 
20130710 

From Warren: solve this simultaneous equation: xy=4
2x+3y=14 Answered by Penny Nom. 





Water use in a rectangular flush tank 
20130510 

From milo: A rectangular flush tank 22" by 71/4 contains water to depth of 17" how many gallons of water will be saved if a conservation device reduces the capacity to 3/5 of this amount? And reduced to the nearest tenth Answered by Penny Nom. 





A cyclic rhombus 
20130416 

From Marisa: I know that the only rhombus that can be inscribed in a circle is a square, but why is that? I've been racking my brain and the internet for solutions, but have found no logical explainations in relation to the arc degrees and angles. Please help. Answered by Chris Fisher. 





4 linear equations with 3 unknowns 
20130412 

From Marian: how to solve for 3 unknowns in 4 simultaneous equations Answered by Penny Nom. 





Simultaneous equations with fractions 
20130331 

From Terence: 5/x6/y=1
17/x+30/y=16
I been spending whole day to solve this question. Would be very grateful if you can help I try
The denominator value is a equations term which make is simultaneous equations so hard. Answered by Penny Nom. 





Tangents to the curve y = x^3 
20130324 

From Ethan: How many tangent lines to the curve y = x^33 pass through the
point (2, 4)? For each such line, and the exact coordinates of the point of
tangency on the curve. Answered by Penny Nom. 





Extraneous solutions 
20130218 

From Eileen: (5x+4)^1/23x=0 Answered by Penny Nom. 





Related rates 
20130217 

From Ishaak: A hemispherical bowl is filled with water at a uniform rate. When the height of water is h cm the volume is π(rh^21/3 h^3 )cm^3, where r s the radius. Find the rate at which the water level is rising when it is half way to the top, given that r = 6 and the bowl fills in 1 minute. Answered by Penny Nom. 





The continuity of f(x,y)=ln(x^2+y^2) 
20130217 

From anu: the question says we have to find the points in the plane where the function is continuous:
f(x,y)=ln(x^2+y^2) . here we aren't given a particular point (x,y) where we have to check a function's
continuity.
what is to be done if we have to check continuity over the whole domain of the function?
please help . Answered by Harley Weston. 





A word problem involving toys 
20130214 

From sandy: Each boy gets 5 toys.Each girl gets 3 toys.There are 150 pupils.
The boys had 74 more toys than girls.
How many boys?
How many girls? Answered by Penny Nom. 





Simultaneous equations 
20130210 

From Michael: 2P + 1/3V =8
3P  2/V=5 Answered by Penny Nom. 





Integration from 0 to 2pi of 1/(3cos x + 2) dx 
20130204 

From ankit: Integration from 0 to 2pi of 1/(3cos x + 2) dx Answered by Harley Weston. 





Maximize profit 
20130119 

From Chris: A firm has the following total revenue and total cost function.
TR=100x2x^2
TC=1/3x^35x^2+30x
Where x=output
Find the output level to minimize profit and the level of profit achieved at this output. Answered by Penny Nom. 





5 1/2 cubic feet of sawdust 
20130119 

From Vina: I have a bale of sawdust that containes 5 1/2 cubic feet. How many will I need to make a cubic yard? Answered by Penny Nom. 





A triangular island 
20121229 

From Udit: A long time ago Mr Gibson found an island shaped as a triangle with three straight shores of length 3 km,4 km and 5 km. He declared an 'exclusion zone' around his island and forbade anyone to come within 1 km of his shore. What was the area of his exclusion zone? Answered by Penny Nom. 





An integral 
20121216 

From Slavena: integration of (lnx)^2 / x dx Answered by Penny Nom. 





An area bounded by lines 
20121216 

From sidra: find area bounded by functions:
y=x
y=2x
and y=5x Answered by Penny Nom. 





A max/min problem 
20121214 

From bailey: A right angled triangle OPQ is drawn as shown where O is at (0,0).
P is a point on the parabola y = ax – x^2
and Q is on the xaxis.
Show that the maximum possible area for the triangle OPQ is (2a^3)/(27) Answered by Penny Nom. 





The derivative of y = sin (30º + x) 
20121107 

From Saskia: derivative of y = sin (30º + x) Answered by Harley Weston. 





An implicit differentiation problem 
20121026 

From Katie: find y' of x^2y2y^3=3x+2y Answered by Harley Weston. 





How fast is the distance between the aircraft and the car increasing? 
20121024 

From Steven: At a certain instant an aircraft flying due east at 240 miles per hour passes directly over a car traveling due southeast at 60 miles per hour on a straight, level road. If the aircraft is flying at an altitude of .5mile, how fast is the distance between the aircraft and the car increasing 36 seconds after the aircraft passes directly over the car? Answered by Penny Nom. 





A label to cover a plastic cup 
20121023 

From Kevin: I'm trying to make a label to cover the entire outer area or a plastic cup. I know there must be a way to figure out the dimensions needed, but I can't seem to figure it out. The circumference of the bottom of the cup is 21.4cm and the circumference at the top of the cup is 29.8cm. The cup is 14.5cm tall. What should the height of the arc from the plane connecting the two ends of the 21.4cm arc. I attached a diagram where x is the value I'm looking for. I'm guessing there is some simple relationship between the length of a line and the arc needed to turn that line into a perfect circle, but I don't know what it is. Can you figure this out and share it with me? Thanks.
Kevin Answered by Penny Nom. 





Differentiation rules 
20121023 

From Morgan: Use the derivative rules to differentiate each of the following:
1. f(x)=1/x1 2. f(x)= sqrt(x) Answered by Penny Nom. 





A word problem involving a fraction 
20121012 

From Derrick: If the numerator and denominator of a fraction are both decreased by 1 the fraction becomes 2/3. If the numerator and denominator are both increased by 1 the fraction will be 3/4. Find the original fraction. How to do? Answered by Penny Nom. 





The hypotenuse 
20120906 

From Jeevan: how can i find the height and base of a right angle triangle if i have the hypotenuse only ? Answered by Penny Nom. 





A tangent to f(x) = 1/x 
20120904 

From Steven: Consider the graph of the function f(x) = 1/x in the first quadrant, and a line tangent to f at a point P where x = k. Find the slop of the line tangent to f at x = k in terms of k and write an equation for the tangent line l in terms of k. Answered by Penny Nom. 





The length and depth of a chord 
20120816 

From Tim: Can I find the radius of a circle, if I have a chord of 2400mm, and a depth
between the center of the chord and the perimeter of the circle of 150mm ?
Thanks
Tim Answered by Penny Nom. 





Fence post holes 
20120719 

From Gerry: Hello, I'm digging 30 8" dia holes, 5 ft deep for fence posts that are 4"x 4" Can you please help me figure out how much stone dust I should order for all 30 holes. Thanks Answered by Penny Nom. 





A volume of revolution 
20120715 

From Tewodros: Let f(x) = e^x and g(x) = x^1/2 both be defined on [0,1]. Consider the region bounded by f(x), g(x), x = 0, x = 1. Rotate this region about the yaxis and determine the volume using the shell method. Answered by Harley Weston. 





Two cars approach a rightangled intersection 
20120410 

From Michael: Two cars approach a rightangled intersection, one traveling south a 40km/h and the other west at 70km/h.
When the faster car is 4km from the intersection and the other case if 3km from the intersection,
how fast is the distance between the car cars changing? Answered by Penny Nom. 





A maximization problem 
20120409 

From Nancy: After an injection, the concentration of drug in a muscle varies according to a function of time, f(t). Suppose that t is measured in hours and f(t)=e^0.02t  e^0.42t. Determine the time when the maximum concentration of drug occurs. Answered by Penny Nom. 





The spread of a rumor 
20120409 

From Roohi: The function f(t) = a/(1+3e^(bt)) has also been used to model the spread of a rumor. Suppose that a= 70 and b=3 0.2. Compute f(2), the percentage of the population that has heard the rumor after 2 hours. Compute f'(2) and describe what it represents. Compute lim t approaches infinity and describe what it represents. Answered by Penny Nom. 





The period T of a pendulum 
20120327 

From Ashley: The period T of a pendulum is given in terms of its length, l, by T=2pi sqrt(l/g) where g is the acceleration due to gravity(a constant)
a. find dT/dl
b. what is the sign of dT/dl
c. what does the sign of dT/dl tell you about the period of the pendulums? Answered by Penny Nom. 





The derivative of x^(1/2) 
20120114 

From Eric: I have an problem figuring out the derivative of the negative square root of x i.e. x^(1/2) using the first principle.
Could someone please show me?
Thanks in advance! Answered by Harley Weston. 





Lost in the woods 
20120112 

From Liz: I am lost in the woods. I believe that I am in the woods 3 miles from a straight road. My car is located 6 miles down the road. I can walk 2miles/hour in the woods and 4 miles/hour along the road. To minimize the time needed to walk to my car, what point on the road should i walk to? Answered by Harley Weston. 





The radius of a circle 
20120112 

From Janie: Find the radius of a circle knowing that a chord of 24.6 inches has a corresponding arc of 70°. Answered by Penny Nom. 





A volume of revolution 
20120111 

From john: find volume of solid generated by revolving the region in the first quadrant bounded by the curve y squared=x cubed, the line x=4 and the xaxis about the line y=8. The answer in the back of the book is 704 pi divided by5 Answered by Penny Nom. 





A wire spiral 
20120107 

From Pinar: I am trying to help my daughter with very challenging maths questions which sometimes I get stuck
If someone help me with one of them I would appreciate it.
Jane is making a spiral out of wire. She bends the wire after 1 cm, then bends the wire
after 2cm, then 3cm and continues in this manner. After 4 bends she used 15 cm of wire
For each bend how many cm wire was used? After 6 bends how many cm wire will she have used?
How many bends will she have made if she uses 66 cm of wire?
I would appreciate if somebody would help me with this.
Thank you!
Pinar Answered by Penny Nom. 





The volume of a frustum of a cone 
20111224 

From CV: If I know the height, taper, and volume of a frustum cone,
what are its Radii?
Calculating frustum cone volume is straight forward.
v=Pi/3*h*(R*R+r*r+R*r) where;
v=volume;
h=frustum height;
R=major radius;
r=minor radius;
Pi=3.1415926;
t=taper, ('slant angle' where t=0 is a disk)
Here is the tricky part.
Knowing 'h', 't', & 'v';
Calculate one or both of 'R' & 'r'.
Specifically, what is the formula for 'R=' or 'r='? Answered by Penny Nom. 





Water is flowing into a cup 
20111219 

From Tim: A cup has a radius of 2" at the bottom and 6" on the top. It is 10" high. 4 Minutes ago, water started pouring at 10 cubic " per minute. How fast was the water level rising 4 minutes ago? How fast is the water level rising now? What will the rate be when the glass is full? Answered by Penny Nom. 





The circumference and area of a circle 
20111213 

From Mable: A circle that going 70mi across using 22/7 I need the area,radius, and the circumference
and how to set up the steps can you help? Answered by Penny Nom. 





A cube of ice is melting 
20111205 

From Emily: a cube of ice (i.e.) each side is of the same length) is melting at a rate such that the length of each side is decreasing at a rate of 5cm per hour. how fast is the volume of the cube decreasing (in cubic cm per hour) at the instant the length of each side is 25cm? Answered by Penny Nom. 





A suspension bridge 
20111130 

From jennifer: suspension bridges like the golden gate bridge, are used to span large distances.
when the main curved cables are attached to the deck by vertical cables they will end
up in the shape of parabola. assume that we need to build a bridge that spans
2,400 feet. the two towers 165feet tall each where placed at 400feet from either
side. the lowest point of the center of the bridge at 10feet. vertical suspension cables
where placed at 25foot interval. how many feet of cable are needed to connect
the deck to the main cables between the two towers? show all working. Answered by Penny Nom. 





Four carpenters can build eight houses in 10 days. 
20111123 

From Kenneth: Four carpenters can build eight houses in 10 days.
Two carpenters can build how many houses in 15 days? Answered by Penny Nom. 





Water pouring into a conical tank 
20111121 

From Patience: Hi my name is patience and I'm having a problem with this question.
Water pours into a conical tank of semi vertical angle 30 degrees at the rate of 4 cm^3/s, where h is the depth of the water at time t. At what rate is the water rising in the tank when h = 10 cm?
Thank you Answered by Penny Nom. 





Lines tangent to y^2=4x 
20111111 

From Reuchen: Find equations of the lines tangent to y^2=4x and containing (2,1). Answered by Penny Nom. 





A scale drawing 
20111030 

From aretha: i have a scale drawing of a house floor plan, don't understand how
to find the answer. the drawing is 1in: 3ft. need to find the length /
width/and the actual length/width of the living room,kitchen, 3bedrooms
deck,sitting room, entry, and closet Answered by Penny Nom. 





A spherical ball in a conical wine glass 
20111026 

From Jules: A heavy spherical ball is lowered carefully into a full conical wine
glass whose depth is h and whose generating angle (between the axis
and a generator) is w. Show that the greatest overflow occurs when the
radius of the ball is (h*sin(w))/(sin(w)+cos(2w)). Answered by Claude Tardif. 





Implicit differentiation 
20111020 

From Monica: Find dy/dx in terms of x and y, if sin(xy)=(x^2)y. Answered by Penny Nom. 





One central circle and three tangent circles 
20111016 

From Margaret: You have one central circle and three or more circles tangent to the outside of the circle of varying radii. You know the x,y coordinates of the centers of the other circles. If you now remove that central circle (and pretend you never knew where it was), can you calculate its center in x,y coordinates? Answered by Chris Fisher. 

